IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7723d10.1038_s41586-018-0520-5.html
   My bibliography  Save this article

A cortical filter that learns to suppress the acoustic consequences of movement

Author

Listed:
  • David M. Schneider

    (Duke University School of Medicine
    Center for Neural Science, New York University)

  • Janani Sundararajan

    (Duke University School of Medicine)

  • Richard Mooney

    (Duke University School of Medicine)

Abstract

Sounds can arise from the environment and also predictably from many of our own movements, such as vocalizing, walking, or playing music. The capacity to anticipate these movement-related (reafferent) sounds and distinguish them from environmental sounds is essential for normal hearing1,2, but the neural circuits that learn to anticipate the often arbitrary and changeable sounds that result from our movements remain largely unknown. Here we developed an acoustic virtual reality (aVR) system in which a mouse learned to associate a novel sound with its locomotor movements, allowing us to identify the neural circuit mechanisms that learn to suppress reafferent sounds and to probe the behavioural consequences of this predictable sensorimotor experience. We found that aVR experience gradually and selectively suppressed auditory cortical responses to the reafferent frequency, in part by strengthening motor cortical activation of auditory cortical inhibitory neurons that respond to the reafferent tone. This plasticity is behaviourally adaptive, as aVR-experienced mice showed an enhanced ability to detect non-reafferent tones during movement. Together, these findings describe a dynamic sensory filter that involves motor cortical inputs to the auditory cortex that can be shaped by experience to selectively suppress the predictable acoustic consequences of movement.

Suggested Citation

  • David M. Schneider & Janani Sundararajan & Richard Mooney, 2018. "A cortical filter that learns to suppress the acoustic consequences of movement," Nature, Nature, vol. 561(7723), pages 391-395, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0520-5
    DOI: 10.1038/s41586-018-0520-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0520-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0520-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joji Tsunada & Xiaoqin Wang & Steven J. Eliades, 2024. "Multiple processes of vocal sensory-motor interaction in primate auditory cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Matthew F. Tang & Ehsan Kheradpezhouh & Conrad C. Y. Lee & J. Edwin Dickinson & Jason B. Mattingley & Ehsan Arabzadeh, 2023. "Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0520-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.