IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7715d10.1038_s41586-018-0329-2.html
   My bibliography  Save this article

The formation of solar-neighbourhood stars in two generations separated by 5 billion years

Author

Listed:
  • Masafumi Noguchi

    (Astronomical Institute, Tohoku University)

Abstract

The chemical compositions of stars encode those of the gas from which they formed, providing important clues regarding the formation histories of galaxies. A powerful diagnostic is the abundance of α elements (O, Mg, Si, S, Ca and Ti) relative to iron, [α/Fe]. The α elements are synthesized and injected into the interstellar medium by type II supernovae, which occur about ten million years after their originating stars form; by contrast, iron is returned to the interstellar medium by type Ia supernovae, which occur after a much longer timescale of roughly one billion years1. Periods of rapid star formation therefore tend to produce high-[α/Fe] stellar populations (because only type II supernovae have time to contribute to interstellar-medium enrichment as the stellar population forms), whereas low-[α/Fe] stars require periods of star formation that last more than a few billion years (over which timescales type Ia supernovae begin to affect the elemental composition of the interstellar medium more strongly than type II supernovae). The existence of two distinct groups of stars in the solar neighbourhood2–7, one with high [α/Fe] and the other with low [α/Fe], therefore suggests two different origins, but the mechanism by which this bimodal distribution arose remains unknown. Here we use a model of disk-galaxy evolution to show that the two episodes of star formation8 predicted by the ‘cold flow’ theory of galactic gas accretion9,10 also explain the observed chemical bimodality. In this scenario, the high-[α/Fe] stars form early, during an initial phase of accretion that involves infalling streams of cold primordial gas. There is then a hiatus of around two billion years until the shock-heated gas in the galactic dark-matter halo has cooled as a result of radiation and can itself commence accretion. The low-[α/Fe] stars form during this second phase. The peaks in these two star-formation episodes are separated by around five billion years. In addition, the large-scale variation in the abundance patterns of these two stellar populations that has been observed for the Milky Way5,7 is partially explained by the spatial variation in this gas-accretion history.

Suggested Citation

  • Masafumi Noguchi, 2018. "The formation of solar-neighbourhood stars in two generations separated by 5 billion years," Nature, Nature, vol. 559(7715), pages 585-588, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7715:d:10.1038_s41586-018-0329-2
    DOI: 10.1038/s41586-018-0329-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0329-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0329-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7715:d:10.1038_s41586-018-0329-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.