IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v557y2018i7707d10.1038_s41586-018-0129-8.html
   My bibliography  Save this article

Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions

Author

Listed:
  • Yuan Liu

    (University of California
    College of Chemistry and Chemical Engineering, and School of Physics and Electronics, Hunan University)

  • Jian Guo

    (University of California)

  • Enbo Zhu

    (University of California)

  • Lei Liao

    (College of Chemistry and Chemical Engineering, and School of Physics and Electronics, Hunan University)

  • Sung-Joon Lee

    (University of California)

  • Mengning Ding

    (University of California)

  • Imran Shakir

    (College of Engineering, King Saud University)

  • Vincent Gambin

    (Northrop Grumman Corporation)

  • Yu Huang

    (University of California
    California Nanosystems Institute, University of California)

  • Xiangfeng Duan

    (California Nanosystems Institute, University of California
    University of California)

Abstract

The junctions formed at the contact between metallic electrodes and semiconductor materials are crucial components of electronic and optoelectronic devices 1 . Metal–semiconductor junctions are characterized by an energy barrier known as the Schottky barrier, whose height can, in the ideal case, be predicted by the Schottky–Mott rule2–4 on the basis of the relative alignment of energy levels. Such ideal physics has rarely been experimentally realized, however, because of the inevitable chemical disorder and Fermi-level pinning at typical metal–semiconductor interfaces2,5–12. Here we report the creation of van der Waals metal–semiconductor junctions in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning. The Schottky barrier height, which approaches the Schottky–Mott limit, is dictated by the work function of the metal and is thus highly tunable. By transferring metal films (silver or platinum) with a work function that matches the conduction band or valence band edges of molybdenum sulfide, we achieve transistors with a two-terminal electron mobility at room temperature of 260 centimetres squared per volt per second and a hole mobility of 175 centimetres squared per volt per second. Furthermore, by using asymmetric contact pairs with different work functions, we demonstrate a silver/molybdenum sulfide/platinum photodiode with an open-circuit voltage of 1.02 volts. Our study not only experimentally validates the fundamental limit of ideal metal–semiconductor junctions but also defines a highly efficient and damage-free strategy for metal integration that could be used in high-performance electronics and optoelectronics.

Suggested Citation

  • Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
  • Handle: RePEc:nat:nature:v:557:y:2018:i:7707:d:10.1038_s41586-018-0129-8
    DOI: 10.1038/s41586-018-0129-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0129-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0129-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:557:y:2018:i:7707:d:10.1038_s41586-018-0129-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.