IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v550y2017i7677d10.1038_nature24046.html
   My bibliography  Save this article

Nucleosome–Chd1 structure and implications for chromatin remodelling

Author

Listed:
  • Lucas Farnung

    (Max Planck Institute for Biophysical Chemistry)

  • Seychelle M. Vos

    (Max Planck Institute for Biophysical Chemistry)

  • Christoph Wigge

    (Max Planck Institute for Biophysical Chemistry)

  • Patrick Cramer

    (Max Planck Institute for Biophysical Chemistry)

Abstract

A cryo-electron microscopy structure of the chromatin remodelling factor Chd1 bound to a nucleosome leads to a model for DNA translocation by its ATPase motor.

Suggested Citation

  • Lucas Farnung & Seychelle M. Vos & Christoph Wigge & Patrick Cramer, 2017. "Nucleosome–Chd1 structure and implications for chromatin remodelling," Nature, Nature, vol. 550(7677), pages 539-542, October.
  • Handle: RePEc:nat:nature:v:550:y:2017:i:7677:d:10.1038_nature24046
    DOI: 10.1038/nature24046
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24046
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Melissa S Gildenberg & M Todd Washington, 2019. "Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
    3. Yichen Zhong & Hakimeh Moghaddas Sani & Bishnu P. Paudel & Jason K. K. Low & Ana P. G. Silva & Stefan Mueller & Chandrika Deshpande & Santosh Panjikar & Xavier J. Reid & Max J. Bedward & Antoine M. Oi, 2022. "The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Benjamin M. Spector & Mrutyunjaya Parida & Ming Li & Christopher B. Ball & Jeffery L. Meier & Donal S. Luse & David H. Price, 2022. "Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Ko Sato & Amarjeet Kumar & Keisuke Hamada & Chikako Okada & Asako Oguni & Ayumi Machiyama & Shun Sakuraba & Tomohiro Nishizawa & Osamu Nureki & Hidetoshi Kono & Kazuhiro Ogata & Toru Sengoku, 2021. "Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Jonathan W. Markert & Seychelle M. Vos & Lucas Farnung, 2023. "Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:550:y:2017:i:7677:d:10.1038_nature24046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.