IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v550y2017i7676d10.1038_nature24036.html
   My bibliography  Save this article

Human TRPML1 channel structures in open and closed conformations

Author

Listed:
  • Philip Schmiege

    (Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University
    University of Texas Southwestern Medical Center)

  • Michael Fine

    (University of Texas Southwestern Medical Center)

  • Günter Blobel

    (Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University)

  • Xiaochun Li

    (Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University
    University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

Abstract

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.

Suggested Citation

  • Philip Schmiege & Michael Fine & Günter Blobel & Xiaochun Li, 2017. "Human TRPML1 channel structures in open and closed conformations," Nature, Nature, vol. 550(7676), pages 366-370, October.
  • Handle: RePEc:nat:nature:v:550:y:2017:i:7676:d:10.1038_nature24036
    DOI: 10.1038/nature24036
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24036
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamma Chi & Qiansheng Liang & Akshay Sridhar & John B. Cowgill & Kasim Sader & Mazdak Radjainia & Pu Qian & Pablo Castro-Hartmann & Shayla Venkaya & Nanki Kaur Singh & Gavin McKinley & Alejandra Ferna, 2022. "Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:550:y:2017:i:7676:d:10.1038_nature24036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.