IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v538y2016i7626d10.1038_nature19841.html
   My bibliography  Save this article

Synchronous long-term oscillations in a synthetic gene circuit

Author

Listed:
  • Laurent Potvin-Trottier

    (Harvard Medical School
    Biophysics Program, Harvard University)

  • Nathan D. Lord

    (Harvard Medical School
    Harvard University)

  • Glenn Vinnicombe

    (University of Cambridge)

  • Johan Paulsson

    (Harvard Medical School)

Abstract

The first synthetic genetic oscillator or ‘repressilator’ is simplified using insights from stochastic theory, thus achieving remarkably precise and robust oscillations and informing current debates about the next generation of synthetic circuits and their potential applications in cell-based therapies.

Suggested Citation

  • Laurent Potvin-Trottier & Nathan D. Lord & Glenn Vinnicombe & Johan Paulsson, 2016. "Synchronous long-term oscillations in a synthetic gene circuit," Nature, Nature, vol. 538(7626), pages 514-517, October.
  • Handle: RePEc:nat:nature:v:538:y:2016:i:7626:d:10.1038_nature19841
    DOI: 10.1038/nature19841
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19841
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Miles V. Rouches & Yasu Xu & Louis Brian Georges Cortes & Guillaume Lambert, 2022. "A plasmid system with tunable copy number," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lukas Aufinger & Johann Brenner & Friedrich C. Simmel, 2022. "Complex dynamics in a synchronized cell-free genetic clock," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Das, Saureesh, 2022. "Recurrence quantification and bifurcation analysis of electrical activity in resistive/memristive synapse coupled Fitzhugh–Nagumo type neurons," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:538:y:2016:i:7626:d:10.1038_nature19841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.