IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v538y2016i7626d10.1038_nature19772.html
   My bibliography  Save this article

Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

Author

Listed:
  • Sabrina Wenzel

    (Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre)

  • Peter M. Cox

    (College of Engineering, Mathematics & Physical Sciences, University of Exeter)

  • Veronika Eyring

    (Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre)

  • Pierre Friedlingstein

    (College of Engineering, Mathematics & Physical Sciences, University of Exeter)

Abstract

Analysis of observations and model projections provides large-scale emergent constraints on the extent of CO2 fertilization, with estimated increases in gross primary productivity for both high-latitude and extratropical ecosystems under elevated atmospheric CO2 concentrations.

Suggested Citation

  • Sabrina Wenzel & Peter M. Cox & Veronika Eyring & Pierre Friedlingstein, 2016. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2," Nature, Nature, vol. 538(7626), pages 499-501, October.
  • Handle: RePEc:nat:nature:v:538:y:2016:i:7626:d:10.1038_nature19772
    DOI: 10.1038/nature19772
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19772
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Yu & Jiafu Mao & Stan D. Wullschleger & Anping Chen & Xiaoying Shi & Yaoping Wang & Forrest M. Hoffman & Yulong Zhang & Eric Pierce, 2022. "Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:538:y:2016:i:7626:d:10.1038_nature19772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.