IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v529y2016i7586d10.1038_nature16468.html
   My bibliography  Save this article

The functional diversity of retinal ganglion cells in the mouse

Author

Listed:
  • Tom Baden

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute for Ophthalmic Research)

  • Philipp Berens

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute for Ophthalmic Research
    Baylor College of Medicine)

  • Katrin Franke

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute for Ophthalmic Research
    Graduate Training Centre of Neuroscience, University of Tübingen)

  • Miroslav Román Rosón

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute for Ophthalmic Research
    Graduate Training Centre of Neuroscience, University of Tübingen)

  • Matthias Bethge

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute of Theoretical Physics, University of Tübingen
    Max Planck Institute of Biological Cybernetics)

  • Thomas Euler

    (Bernstein Centre for Computational Neuroscience
    Centre for Integrative Neuroscience, University of Tübingen
    Institute for Ophthalmic Research)

Abstract

In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such ‘output channels’ exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

Suggested Citation

  • Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
  • Handle: RePEc:nat:nature:v:529:y:2016:i:7586:d:10.1038_nature16468
    DOI: 10.1038/nature16468
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16468
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marvin Seifert & Paul A. Roberts & George Kafetzis & Daniel Osorio & Tom Baden, 2023. "Birds multiplex spectral and temporal visual information via retinal On- and Off-channels," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Dmitry Molotkov & Leiron Ferrarese & Tom Boissonnet & Hiroki Asari, 2023. "Topographic axonal projection at single-cell precision supports local retinotopy in the mouse superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    5. Jacqueline Cornean & Sebastian Molina-Obando & Burak Gür & Annika Bast & Giordano Ramos-Traslosheros & Jonas Chojetzki & Lena Lörsch & Maria Ioannidou & Rachita Taneja & Christopher Schnaitmann & Mari, 2024. "Heterogeneity of synaptic connectivity in the fly visual system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Oleksandr Sorochynskyi & Stéphane Deny & Olivier Marre & Ulisse Ferrari, 2021. "Predicting synchronous firing of large neural populations from sequential recordings," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-21, January.
    8. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Matías A. Goldin & Baptiste Lefebvre & Samuele Virgili & Mathieu Kim Pham Van Cang & Alexander Ecker & Thierry Mora & Ulisse Ferrari & Olivier Marre, 2022. "Context-dependent selectivity to natural images in the retina," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Luke E Rogerson & Zhijian Zhao & Katrin Franke & Thomas Euler & Philipp Berens, 2019. "Bayesian hypothesis testing and experimental design for two-photon imaging data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-27, August.
    11. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    12. David Swygart & Wan-Qing Yu & Shunsuke Takeuchi & Rachel O. L. Wong & Gregory W. Schwartz, 2024. "A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:529:y:2016:i:7586:d:10.1038_nature16468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.