IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v519y2015i7541d10.1038_nature14178.html
   My bibliography  Save this article

A motor cortex circuit for motor planning and movement

Author

Listed:
  • Nuo Li

    (Janelia Research Campus, Howard Hughes Medical Institute)

  • Tsai-Wen Chen

    (Janelia Research Campus, Howard Hughes Medical Institute)

  • Zengcai V. Guo

    (Janelia Research Campus, Howard Hughes Medical Institute)

  • Charles R. Gerfen

    (Laboratory of Systems Neuroscience, National Institute of Mental Health)

  • Karel Svoboda

    (Janelia Research Campus, Howard Hughes Medical Institute)

Abstract

Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.

Suggested Citation

  • Nuo Li & Tsai-Wen Chen & Zengcai V. Guo & Charles R. Gerfen & Karel Svoboda, 2015. "A motor cortex circuit for motor planning and movement," Nature, Nature, vol. 519(7541), pages 51-56, March.
  • Handle: RePEc:nat:nature:v:519:y:2015:i:7541:d:10.1038_nature14178
    DOI: 10.1038/nature14178
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14178
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Ignacio Alonso & Irina Scheer & Mélanie Palacio-Manzano & Noémie Frézel-Jacob & Antoine Philippides & Mario Prsa, 2023. "Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Sebastian Reinartz & Arash Fassihi & Maria Ravera & Luciano Paz & Francesca Pulecchi & Marco Gigante & Mathew E. Diamond, 2024. "Direct contribution of the sensory cortex to the judgment of stimulus duration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Bowen Dempsey & Selvee Sungeelee & Phillip Bokiniec & Zoubida Chettouh & Séverine Diem & Sandra Autran & Evan R. Harrell & James F. A. Poulet & Carmen Birchmeier & Harry Carey & Auguste Genovesio & Si, 2021. "A medullary centre for lapping in mice," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Tristano Pancani & Michelle Day & Tatiana Tkatch & David L. Wokosin & Patricia González-Rodríguez & Jyothisri Kondapalli & Zhong Xie & Yu Chen & Vahri Beaumont & D. James Surmeier, 2023. "Cholinergic deficits selectively boost cortical intratelencephalic control of striatum in male Huntington’s disease model mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    10. Daniel G. Taub & Qiufen Jiang & Francesca Pietrafesa & Junfeng Su & Aloe Carroll & Caitlin Greene & Michael R. Blanchard & Aakanksha Jain & Mahmoud El-Rifai & Alexis Callen & Katherine Yager & Clara C, 2024. "The secondary somatosensory cortex gates mechanical and heat sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Laura D'Angelo & Antonio Canale & Zhaoxia Yu & Michele Guindani, 2023. "Bayesian nonparametric analysis for the detection of spikes in noisy calcium imaging data," Biometrics, The International Biometric Society, vol. 79(2), pages 1370-1382, June.
    12. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Daigo Takeuchi & Dheeraj Roy & Shruti Muralidhar & Takashi Kawai & Andrea Bari & Chanel Lovett & Heather A. Sullivan & Ian R. Wickersham & Susumu Tonegawa, 2022. "Cingulate-motor circuits update rule representations for sequential choice decisions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:519:y:2015:i:7541:d:10.1038_nature14178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.