IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v510y2014i7505d10.1038_nature13261.html
   My bibliography  Save this article

CFIm25 links alternative polyadenylation to glioblastoma tumour suppression

Author

Listed:
  • Chioniso P. Masamha

    (The University of Texas Medical School at Houston)

  • Zheng Xia

    (Baylor College of Medicine)

  • Jingxuan Yang

    (The University of Texas Medical School at Houston)

  • Todd R. Albrecht

    (The University of Texas Medical School at Houston)

  • Min Li

    (The University of Texas Medical School at Houston)

  • Ann-Bin Shyu

    (The University of Texas Medical School at Houston)

  • Wei Li

    (Baylor College of Medicine)

  • Eric J. Wagner

    (The University of Texas Medical School at Houston)

Abstract

CFIm25 is identified as a factor that prevents messenger RNAs being shortened due to altered 3′ polyadenylation, which typically occurs when cells undergo high proliferation and correlates with increased tumorigenic activity in glioblastoma tumours.

Suggested Citation

  • Chioniso P. Masamha & Zheng Xia & Jingxuan Yang & Todd R. Albrecht & Min Li & Ann-Bin Shyu & Wei Li & Eric J. Wagner, 2014. "CFIm25 links alternative polyadenylation to glioblastoma tumour suppression," Nature, Nature, vol. 510(7505), pages 412-416, June.
  • Handle: RePEc:nat:nature:v:510:y:2014:i:7505:d:10.1038_nature13261
    DOI: 10.1038/nature13261
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13261
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Chen & Zeyang Wang & Lihai Gong & Qixuan Wang & Wenyan Chen & Jia Wang & Xuelian Ma & Ruofan Ding & Xing Li & Xudong Zou & Mireya Plass & Cheng Lian & Ting Ni & Gong-Hong Wei & Wei Li & Lin Deng &, 2024. "A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ya Cui & Frederick J. Arnold & Fanglue Peng & Dan Wang & Jason Sheng Li & Sebastian Michels & Eric J. Wagner & Albert R. Spada & Wei Li, 2023. "Alternative polyadenylation transcriptome-wide association study identifies APA-linked susceptibility genes in brain disorders," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Buki Kwon & Mervin M. Fansler & Neil D. Patel & Jihye Lee & Weirui Ma & Christine Mayr, 2022. "Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zhiping Zhang & Bongmin Bae & Winston H. Cuddleston & Pedro Miura, 2023. "Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:510:y:2014:i:7505:d:10.1038_nature13261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.