IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v507y2014i7493d10.1038_nature13163.html
   My bibliography  Save this article

REST and stress resistance in ageing and Alzheimer’s disease

Author

Listed:
  • Tao Lu

    (Harvard Medical School)

  • Liviu Aron

    (Harvard Medical School)

  • Joseph Zullo

    (Harvard Medical School)

  • Ying Pan

    (Harvard Medical School)

  • Haeyoung Kim

    (Harvard Medical School)

  • Yiwen Chen

    (Dana-Faber Cancer Institute and Harvard School of Public Health)

  • Tun-Hsiang Yang

    (Harvard Medical School)

  • Hyun-Min Kim

    (Harvard Medical School)

  • Derek Drake

    (Harvard Medical School)

  • X. Shirley Liu

    (Dana-Faber Cancer Institute and Harvard School of Public Health)

  • David A. Bennett

    (Rush Alzheimer’s Disease Center, Rush University Medical Center)

  • Monica P. Colaiácovo

    (Harvard Medical School)

  • Bruce A. Yankner

    (Harvard Medical School)

Abstract

Human neurons are functional over an entire lifetime, yet the mechanisms that preserve function and protect against neurodegeneration during ageing are unknown. Here we show that induction of the repressor element 1-silencing transcription factor (REST; also known as neuron-restrictive silencer factor, NRSF) is a universal feature of normal ageing in human cortical and hippocampal neurons. REST is lost, however, in mild cognitive impairment and Alzheimer’s disease. Chromatin immunoprecipitation with deep sequencing and expression analysis show that REST represses genes that promote cell death and Alzheimer’s disease pathology, and induces the expression of stress response genes. Moreover, REST potently protects neurons from oxidative stress and amyloid β-protein toxicity, and conditional deletion of REST in the mouse brain leads to age-related neurodegeneration. A functional orthologue of REST, Caenorhabditis elegans SPR-4, also protects against oxidative stress and amyloid β-protein toxicity. During normal ageing, REST is induced in part by cell non-autonomous Wnt signalling. However, in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies, REST is lost from the nucleus and appears in autophagosomes together with pathological misfolded proteins. Finally, REST levels during ageing are closely correlated with cognitive preservation and longevity. Thus, the activation state of REST may distinguish neuroprotection from neurodegeneration in the ageing brain.

Suggested Citation

  • Tao Lu & Liviu Aron & Joseph Zullo & Ying Pan & Haeyoung Kim & Yiwen Chen & Tun-Hsiang Yang & Hyun-Min Kim & Derek Drake & X. Shirley Liu & David A. Bennett & Monica P. Colaiácovo & Bruce A. Yankner, 2014. "REST and stress resistance in ageing and Alzheimer’s disease," Nature, Nature, vol. 507(7493), pages 448-454, March.
  • Handle: RePEc:nat:nature:v:507:y:2014:i:7493:d:10.1038_nature13163
    DOI: 10.1038/nature13163
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13163
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liviu Aron & Chenxi Qiu & Zhen Kai Ngian & Marianna Liang & Derek Drake & Jaejoon Choi & Marty A. Fernandez & Perle Roche & Emma L. Bunting & Ella K. Lacey & Sara E. Hamplova & Monlan Yuan & Michael S, 2023. "A neurodegeneration checkpoint mediated by REST protects against the onset of Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:507:y:2014:i:7493:d:10.1038_nature13163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.