IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v504y2013i7478d10.1038_nature12854.html
   My bibliography  Save this article

North Atlantic warming and the retreat of Greenland's outlet glaciers

Author

Listed:
  • Fiammetta Straneo

    (Woods Hole Oceanographic Institution)

  • Patrick Heimbach

    (Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology)

Abstract

Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

Suggested Citation

  • Fiammetta Straneo & Patrick Heimbach, 2013. "North Atlantic warming and the retreat of Greenland's outlet glaciers," Nature, Nature, vol. 504(7478), pages 36-43, December.
  • Handle: RePEc:nat:nature:v:504:y:2013:i:7478:d:10.1038_nature12854
    DOI: 10.1038/nature12854
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12854
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. R. Chudley & I. M. Howat & M. D. King & A. Negrete, 2023. "Atlantic water intrusion triggers rapid retreat and regime change at previously stable Greenland glacier," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Henning Åkesson & Mathieu Morlighem & Johan Nilsson & Christian Stranne & Martin Jakobsson, 2022. "Petermann ice shelf may not recover after a future breakup," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Shenghang Wang & Shen Tan & Jiaming Xu, 2023. "Evaluation and Implication of the Policies towards China’s Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    4. Caroline V. B. Gjelstrup & Mikael K. Sejr & Laura Steur & Jørgen Schou Christiansen & Mats A. Granskog & Boris P. Koch & Eva Friis Møller & Mie H. S. Winding & Colin A. Stedmon, 2022. "Vertical redistribution of principle water masses on the Northeast Greenland Shelf," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lars Max & Dirk Nürnberg & Cristiano M. Chiessi & Marlene M. Lenz & Stefan Mulitza, 2022. "Subsurface ocean warming preceded Heinrich Events," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Joanna Beata Kowalska & Paweł Nicia & Michał Gąsiorek & Paweł Zadrożny & Michał Hubert Węgrzyn & Jarosław Waroszewski, 2022. "Are Natural or Anthropogenic Factors Influencing Potentially Toxic Elements’ Enrichment in Soils in Proglacial Zones? An Example from Kaffiøyra (Oscar II Land, Spitsbergen)," IJERPH, MDPI, vol. 19(20), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:504:y:2013:i:7478:d:10.1038_nature12854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.