IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v479y2011i7374d10.1038_nature10586.html
   My bibliography  Save this article

Structural transformation in supercooled water controls the crystallization rate of ice

Author

Listed:
  • Emily B. Moore

    (University of Utah)

  • Valeria Molinero

    (University of Utah)

Abstract

How water forms ice The various anomalous properties of water have puzzled scientists for decades, and many hypotheses have been put forward to explain their origin. One mystery is the question of what determines the lowest temperature to which water can be cooled before it freezes to ice. Rapid crystallization at low temperatures hampers experimental studies, and simulations are usually prohibitively costly in terms of computer time. Using a simple water model that allows demanding calculations, Emily Moore and Valeria Molinero now show that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water controls the rate and mechanism of ice formation. The structural change also results in a peak in the rate of crystallization at 225 K; below this temperature, ice nuclei form faster than liquid water can equilibrate. This finding explains the observed thermodynamic anomalies, and why homogeneous ice nucleation rates depend on the thermodynamics of water.

Suggested Citation

  • Emily B. Moore & Valeria Molinero, 2011. "Structural transformation in supercooled water controls the crystallization rate of ice," Nature, Nature, vol. 479(7374), pages 506-508, November.
  • Handle: RePEc:nat:nature:v:479:y:2011:i:7374:d:10.1038_nature10586
    DOI: 10.1038/nature10586
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10586
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Shan Chen & Xuelong Liao & Rong Huang & Fengmei Wang & Jialei Chen & Yaxin Wang & Fei Wang & Huan Wang, 2023. "Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Meijia Qiu & Peng Sun & Kai Han & Zhenjiang Pang & Jun Du & Jinliang Li & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2023. "Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:479:y:2011:i:7374:d:10.1038_nature10586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.