IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v466y2010i7308d10.1038_nature09262.html
   My bibliography  Save this article

Mesenchymal and haematopoietic stem cells form a unique bone marrow niche

Author

Listed:
  • Simón Méndez-Ferrer

    (Mount Sinai School of Medicine
    Mount Sinai School of Medicine
    Present address: Department of Cardiovascular Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain (S.M.-F.); Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK (B.D.M.).)

  • Tatyana V. Michurina

    (Cold Spring Harbor Laboratory)

  • Francesca Ferraro

    (Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School)

  • Amin R. Mazloom

    (Mount Sinai School of Medicine)

  • Ben D. MacArthur

    (Mount Sinai School of Medicine
    Present address: Department of Cardiovascular Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain (S.M.-F.); Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK (B.D.M.).)

  • Sergio A. Lira

    (Mount Sinai School of Medicine)

  • David T. Scadden

    (Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School)

  • Avi Ma’ayan

    (Mount Sinai School of Medicine)

  • Grigori N. Enikolopov

    (Cold Spring Harbor Laboratory)

  • Paul S. Frenette

    (Mount Sinai School of Medicine
    Mount Sinai School of Medicine
    Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine)

Abstract

The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.

Suggested Citation

  • Simón Méndez-Ferrer & Tatyana V. Michurina & Francesca Ferraro & Amin R. Mazloom & Ben D. MacArthur & Sergio A. Lira & David T. Scadden & Avi Ma’ayan & Grigori N. Enikolopov & Paul S. Frenette, 2010. "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche," Nature, Nature, vol. 466(7308), pages 829-834, August.
  • Handle: RePEc:nat:nature:v:466:y:2010:i:7308:d:10.1038_nature09262
    DOI: 10.1038/nature09262
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09262
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trent D. Hall & Hyunjin Kim & Mahmoud Dabbah & Jacquelyn A. Myers & Jeremy Chase Crawford & Antonio Morales-Hernandez & Claire E. Caprio & Pramika Sriram & Emilia Kooienga & Marta Derecka & Esther A. , 2022. "Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Taichi Nakatani & Tatsuki Sugiyama & Yoshiki Omatsu & Hitomi Watanabe & Gen Kondoh & Takashi Nagasawa, 2023. "Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xianzhu Zhang & Wei Jiang & Chang Xie & Xinyu Wu & Qian Ren & Fei Wang & Xilin Shen & Yi Hong & Hongwei Wu & Youguo Liao & Yi Zhang & Renjie Liang & Wei Sun & Yuqing Gu & Tao Zhang & Yishan Chen & Wei, 2022. "Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Alicia Villatoro & Vincent Cuminetti & Aurora Bernal & Carlos Torroja & Itziar Cossío & Alberto Benguría & Marc Ferré & Joanna Konieczny & Enrique Vázquez & Andrea Rubio & Peter Utnes & Almudena Tello, 2023. "Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    6. Jia Q. Ng & Toghrul H. Jafarov & Christopher B. Little & Tongtong Wang & Abdullah M. Ali & Yan Ma & Georgette A. Radford & Laura Vrbanac & Mari Ichinose & Samuel Whittle & David J. Hunter & Tamsin R. , 2023. "Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Christina M. Termini & Amara Pang & Tiancheng Fang & Martina Roos & Vivian Y. Chang & Yurun Zhang & Nicollette J. Setiawan & Lia Signaevskaia & Michelle Li & Mindy M. Kim & Orel Tabibi & Paulina K. Li, 2021. "Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Adrienne Anginot & Julie Nguyen & Zeina Abou Nader & Vincent Rondeau & Amélie Bonaud & Maria Kalogeraki & Antoine Boutin & Julia P. Lemos & Valeria Bisio & Joyce Koenen & Lea Hanna Doumit Sakr & Amand, 2023. "WHIM Syndrome-linked CXCR4 mutations drive osteoporosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:466:y:2010:i:7308:d:10.1038_nature09262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.