Author
Listed:
- N. Manyala
(Louisiana State University, Baton Rouge, Louisiana 70803, USA
National University of Lesotho, P. O. Roma 180, Maseru 100, Lesotho)
- J. F. DiTusa
(Louisiana State University, Baton Rouge, Louisiana 70803, USA)
- G. Aeppli
(UCL, London WC1E 6BT, UK)
- A. P. Ramirez
(Bell Laboratories, Alcatel-Lucent, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA)
Abstract
Landau–Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, lattice defects and the other ∼1022 cm-3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high-temperature superconductors3, silicon-based field-effect transistors that host two-dimensional metals4, and certain rare-earth compounds at the threshold of magnetism5,6,7,8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials—doped small-bandgap semiconductors near a metal–insulator transition—can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have found a physical realization of the only mathematically rigorous route to a non-Fermi liquid, namely the ‘undercompensated Kondo effect’, where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9,10,11,12.
Suggested Citation
N. Manyala & J. F. DiTusa & G. Aeppli & A. P. Ramirez, 2008.
"Doping a semiconductor to create an unconventional metal,"
Nature, Nature, vol. 454(7207), pages 976-980, August.
Handle:
RePEc:nat:nature:v:454:y:2008:i:7207:d:10.1038_nature07137
DOI: 10.1038/nature07137
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:454:y:2008:i:7207:d:10.1038_nature07137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.