IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v443y2006i7113d10.1038_nature05294.html
   My bibliography  Save this article

Prions and their partners in crime

Author

Listed:
  • Byron Caughey

    (National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories)

  • Gerald S. Baron

    (National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories)

Abstract

Prions, the infectious agents of transmissible spongiform encephalopathies (TSEs), have defied full characterization for decades. The dogma has been that prions lack nucleic acids and are composed of a pathological, self-inducing form of the host's prion protein (PrP). Recent progress in propagating TSE infectivity in cell-free systems has effectively ruled out the involvement of foreign nucleic acids. However, host-derived nucleic acids or other non-PrP molecules seem to be crucial. Interactions between TSE-associated PrP and its normal counterpart are also pathalogically important, so the physiological functions of normal PrP and how they might be corrupted by TSE infections have been the subject of recent research.

Suggested Citation

  • Byron Caughey & Gerald S. Baron, 2006. "Prions and their partners in crime," Nature, Nature, vol. 443(7113), pages 803-810, October.
  • Handle: RePEc:nat:nature:v:443:y:2006:i:7113:d:10.1038_nature05294
    DOI: 10.1038/nature05294
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05294
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victoria A Lawson & Brooke Lumicisi & Jeremy Welton & Dorothy Machalek & Katrina Gouramanis & Helen M Klemm & James D Stewart & Colin L Masters & David E Hoke & Steven J Collins & Andrew F Hill, 2010. "Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:443:y:2006:i:7113:d:10.1038_nature05294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.