Author
Listed:
- Anthony Holtmaat
(Howard Hughes Medical Institute, Cold Spring Harbor Laboratory)
- Linda Wilbrecht
(Howard Hughes Medical Institute, Cold Spring Harbor Laboratory)
- Graham W. Knott
(Institut de biologie cellulaire et de morphologie (IBCM), Université de Lausanne)
- Egbert Welker
(Institut de biologie cellulaire et de morphologie (IBCM), Université de Lausanne)
- Karel Svoboda
(Howard Hughes Medical Institute, Cold Spring Harbor Laboratory)
Abstract
Functional circuits in the adult neocortex adjust to novel sensory experience, but the underlying synaptic mechanisms remain unknown1. Growth and retraction of dendritic spines with synapse formation and elimination could change brain circuits2,3,4,5,6,7. In the apical tufts of layer 5B (L5B) pyramidal neurons in the mouse barrel cortex, a subset of dendritic spines appear and disappear over days, whereas most spines are persistent for months4,5,6,8,9. Under baseline conditions, new spines are mostly transient and rarely survive for more than a week. Transient spines tend to be small4,5,9, whereas persistent spines are usually large4,5,6,8,9. Because most excitatory synapses in the cortex occur on spines, and because synapse size10 and the number of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors11,12,13 are proportional to spine volume, the excitation of pyramidal neurons is probably driven through synapses on persistent spines. Here we test whether the generation and loss of persistent spines are enhanced by novel sensory experience. We repeatedly imaged dendritic spines for one month after trimming alternate whiskers, a paradigm that induces adaptive functional changes in neocortical circuits14,15. Whisker trimming stabilized new spines and destabilized previously persistent spines. New-persistent spines always formed synapses. They were preferentially added on L5B neurons with complex apical tufts rather than simple tufts. Our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons. These synaptic changes probably underlie experience-dependent remodelling of specific neocortical circuits.
Suggested Citation
Anthony Holtmaat & Linda Wilbrecht & Graham W. Knott & Egbert Welker & Karel Svoboda, 2006.
"Experience-dependent and cell-type-specific spine growth in the neocortex,"
Nature, Nature, vol. 441(7096), pages 979-983, June.
Handle:
RePEc:nat:nature:v:441:y:2006:i:7096:d:10.1038_nature04783
DOI: 10.1038/nature04783
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:441:y:2006:i:7096:d:10.1038_nature04783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.