Author
Listed:
- Simon Griffiths
(John Innes Centre)
- Rebecca Sharp
(John Innes Centre)
- Tracie N. Foote
(John Innes Centre)
- Isabelle Bertin
(John Innes Centre)
- Michael Wanous
(Augustana College)
- Steve Reader
(John Innes Centre)
- Isabelle Colas
(John Innes Centre)
- Graham Moore
(John Innes Centre)
Abstract
The foundation of western civilization owes much to the high fertility of bread wheat, which results from the stability of its polyploid genome. Despite possessing multiple sets of related chromosomes, hexaploid (bread) and tetraploid (pasta) wheat both behave as diploids at meiosis. Correct pairing of homologous chromosomes is controlled by the Ph1 locus1. In wheat hybrids, Ph1 prevents pairing between related chromosomes2. Lack of Ph1 activity in diploid relatives of wheat suggests that Ph1 arose on polyploidization3. Absence of phenotypic variation, apart from dosage effects, and the failure of ethylmethane sulphonate treatment to yield mutants, indicates that Ph1 has a complex structure4,5. Here we have localized Ph1 to a 2.5-megabase interstitial region of wheat chromosome 5B containing a structure consisting of a segment of subtelomeric heterochromatin that inserted into a cluster of cdc2-related genes after polyploidization. The correlation of the presence of this structure with Ph1 activity in related species, and the involvement of heterochromatin with Ph1 (ref. 6) and cdc2 genes with meiosis, makes the structure a good candidate for the Ph1 locus.
Suggested Citation
Simon Griffiths & Rebecca Sharp & Tracie N. Foote & Isabelle Bertin & Michael Wanous & Steve Reader & Isabelle Colas & Graham Moore, 2006.
"Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat,"
Nature, Nature, vol. 439(7077), pages 749-752, February.
Handle:
RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04434
DOI: 10.1038/nature04434
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.