IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7075d10.1038_nature04419.html
   My bibliography  Save this article

Amplification of chirality in two-dimensional enantiomorphous lattices

Author

Listed:
  • Roman Fasel

    (Empa, Swiss Federal Laboratories for Materials Testing and Research)

  • Manfred Parschau

    (Empa, Swiss Federal Laboratories for Materials Testing and Research)

  • Karl-Heinz Ernst

    (Empa, Swiss Federal Laboratories for Materials Testing and Research)

Abstract

The concept of chirality dates back to 1848, when Pasteur manually separated left-handed from right-handed sodium ammonium tartrate crystals1. Crystallization is still an important means for separating chiral molecules into their two different mirror-image isomers (enantiomers)2, yet remains poorly understood3. For example, there are no firm rules to predict whether a particular pair of chiral partners will follow the behaviour of the vast majority of chiral molecules and crystallize together as racemic crystals4, or as separate enantiomers. A somewhat simpler and more tractable version of this phenomenon is crystallization in two dimensions, such as the formation of surface structures by adsorbed molecules. The relatively simple spatial molecular arrangement of these systems makes it easier to study the effects of specific chiral interactions5; moreover, chiral assembly and recognition processes can be observed directly and with molecular resolution using scanning tunnelling microscopy6,7,8,9. The enantioseparation of chiral molecules in two dimensions is expected to occur more readily because planar confinement excludes some bulk crystal symmetry elements and enhances chiral interactions10,11; however, many surface structures have been found to be racemic12,13,14,15,16,17,18. Here we show that the chiral hydrocarbon heptahelicene on a Cu(111) surface does not undergo two-dimensional spontaneous resolution into enantiomers19, but still shows enantiomorphism on a mesoscopic length scale that is readily amplified. That is, we observe formation of racemic heptahelicene domains with non-superimposable mirror-like lattice structures, with a small excess of one of the heptahelicene enantiomers suppressing the formation of one domain type. Similar to the induction of homochirality in achiral enantiomorphous monolayers20 by a chiral modifier, a small enantiomeric excess suffices to ensure that the entire molecular monolayer consists of domains having only one of two possible, non-superimposable, mirror-like lattice structures.

Suggested Citation

  • Roman Fasel & Manfred Parschau & Karl-Heinz Ernst, 2006. "Amplification of chirality in two-dimensional enantiomorphous lattices," Nature, Nature, vol. 439(7075), pages 449-452, January.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7075:d:10.1038_nature04419
    DOI: 10.1038/nature04419
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04419
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7075:d:10.1038_nature04419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.