Author
Listed:
- M. Avinun-Kalish
(Weizmann Institute of Science)
- M. Heiblum
(Weizmann Institute of Science)
- O. Zarchin
(Weizmann Institute of Science)
- D. Mahalu
(Weizmann Institute of Science)
- V. Umansky
(Weizmann Institute of Science)
Abstract
The measurement of phase in coherent electron systems—that is, ‘mesoscopic’ systems such as quantum dots—can yield information about fundamental transport properties that is not readily apparent from conductance measurements. Phase measurements on relatively large quantum dots1 recently revealed that the phase evolution for electrons traversing the dots exhibits a ‘universal’ behaviour, independent of dot size, shape, and electron occupancy2,3. Specifically, for quantum dots in the Coulomb blockade regime, the transmission phase increases monotonically by π throughout each conductance peak; in the conductance valleys, the phase returns sharply to its starting value. The expected mesoscopic features in the phase evolution—related to the dot's shape, spin degeneracy or to exchange effects—have not been observed, and there is at present no satisfactory explanation for the observed universality in phase behaviour4. Here we report the results of phase measurements on a series of small quantum dots, having occupancies of between only 1–20 electrons, where the phase behaviour for electron transmission should in principle be easier to interpret. In contrast to the universal behaviour observed thus far only in the larger dots, we see clear mesoscopic features in the phase measurements when the dot occupancy is less than ∼10 electrons. As the occupancy increases, the manner of phase evolution changes and universal behaviour is recovered for some 14 electrons or more. The identification of a transition from the expected mesoscopic behaviour to universal phase evolution should help to direct and constrain theoretical models for the latter.
Suggested Citation
M. Avinun-Kalish & M. Heiblum & O. Zarchin & D. Mahalu & V. Umansky, 2005.
"Crossover from ‘mesoscopic’ to ‘universal’ phase for electron transmission in quantum dots,"
Nature, Nature, vol. 436(7050), pages 529-533, July.
Handle:
RePEc:nat:nature:v:436:y:2005:i:7050:d:10.1038_nature03899
DOI: 10.1038/nature03899
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7050:d:10.1038_nature03899. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.