IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7047d10.1038_nature03686.html
   My bibliography  Save this article

X-ray structure of a tetranucleosome and its implications for the chromatin fibre

Author

Listed:
  • Thomas Schalch

    (Institute for Molecular Biology and Biophysics, ETH–Hönggerberg)

  • Sylwia Duda

    (Institute for Molecular Biology and Biophysics, ETH–Hönggerberg)

  • David F. Sargent

    (Institute for Molecular Biology and Biophysics, ETH–Hönggerberg)

  • Timothy J. Richmond

    (Institute for Molecular Biology and Biophysics, ETH–Hönggerberg)

Abstract

Chromatin organization The fundamental level of DNA organization was revealed in 1997 with the determination of the nucleosome core structure. The crystal structure of a tetranucleosome has now been determined at 9Å resolution, showing how nucleosomes are arranged at the next level up, in the chromosomes that are the substrate for DNA replication. The nucleosomes form a two-start helix, and their geometry in the chromatin matrix is best described by the ‘crossed-linker’ model.

Suggested Citation

  • Thomas Schalch & Sylwia Duda & David F. Sargent & Timothy J. Richmond, 2005. "X-ray structure of a tetranucleosome and its implications for the chromatin fibre," Nature, Nature, vol. 436(7047), pages 138-141, July.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7047:d:10.1038_nature03686
    DOI: 10.1038/nature03686
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03686
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji-Ping Wang & Yvonne Fondufe-Mittendorf & Liqun Xi & Guei-Feng Tsai & Eran Segal & Jonathan Widom, 2008. "Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-10, September.
    2. Francesca Maggioni & Marida Bertocchi & Ettore Mosca & Rolland Reinbold & Ileana Zucchi, 2013. "Modeling chromatin fibre folding for human embryonic stem cells," Working Papers (2013-) 1301_qum, University of Bergamo, Department of Management, Economics and Quantitative Methods.
    3. Uwe Schneider & Fabiano Vasi & Jürgen Besserer, 2016. "The Impact of the Geometrical Structure of the DNA on Parameters of the Track-Event Theory for Radiation Induced Cell Kill," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-13, October.
    4. Shuxiang Li & Tiejun Wei & Anna R. Panchenko, 2023. "Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Harsh Nagpal & Ahmad Ali-Ahmad & Yasuhiro Hirano & Wei Cai & Mario Halic & Tatsuo Fukagawa & Nikolina Sekulić & Beat Fierz, 2023. "CENP-A and CENP-B collaborate to create an open centromeric chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Rina Hirano & Haruhiko Ehara & Tomoya Kujirai & Tamami Uejima & Yoshimasa Takizawa & Shun-ichi Sekine & Hitoshi Kurumizaka, 2022. "Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7047:d:10.1038_nature03686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.