Author
Listed:
- Joseph P. Montoya
(School of Biology, Georgia Institute of Technology)
- Carolyn M. Holl
(School of Biology, Georgia Institute of Technology)
- Jonathan P. Zehr
(University of California)
- Andrew Hansen
(University of Hawaii)
- Tracy A. Villareal
(The University of Texas at Austin)
- Douglas G. Capone
(University of Southern California)
Abstract
The availability of nitrogen is important in regulating biological productivity in marine environments. Deepwater nitrate has long been considered the major source of new nitrogen supporting primary production in oligotrophic regions of the open ocean, but recent studies have showed that biological N2 fixation has a critical role in supporting oceanic new production1,2,3,4,5,6,7. Large colonial cyanobacteria in the genus Trichodesmium and the heterocystous endosymbiont Richelia have traditionally been considered the dominant marine N2 fixers, but unicellular diazotrophic cyanobacteria and bacterioplankton have recently been found in the picoplankton and nanoplankton community of the North Pacific central gyre, and a variety of molecular and isotopic evidence suggests that these unicells could make a major contribution to the oceanic N budget8. Here we report rates of N2 fixation by these small, previously overlooked diazotrophs that, although spatially variable, can equal or exceed the rate of N2 fixation reported for larger, more obvious organisms. Direct measurements of 15N2 fixation by small diazotrophs in various parts of the Pacific Ocean, including the waters off Hawaii where the unicellular diazotrophs were first characterized, show that N2 fixation by unicellular diazotrophs can support a significant fraction of total new production in oligotrophic waters.
Suggested Citation
Joseph P. Montoya & Carolyn M. Holl & Jonathan P. Zehr & Andrew Hansen & Tracy A. Villareal & Douglas G. Capone, 2004.
"High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean,"
Nature, Nature, vol. 430(7003), pages 1027-1031, August.
Handle:
RePEc:nat:nature:v:430:y:2004:i:7003:d:10.1038_nature02824
DOI: 10.1038/nature02824
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:7003:d:10.1038_nature02824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.