IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v429y2004i6988d10.1038_nature02508.html
   My bibliography  Save this article

Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos

Author

Listed:
  • Ulrich R. Christensen

    (Max-Planck-Institut für Aeronomie)

  • Andreas Tilgner

    (Institut für Geophysik, Universität Göttingen)

Abstract

In the Earth's fluid outer core, a dynamo process converts thermal and gravitational energy into magnetic energy. The power needed to sustain the geomagnetic field is set by the ohmic losses (dissipation due to electrical resistance)1. Recent estimates of ohmic losses cover a wide range, from 0.1 to 3.5 TW, or roughly 0.3–10% of the Earth's surface heat flow1,2,3,4. The energy requirement of the dynamo puts constraints on the thermal budget and evolution of the core through Earth's history1,2,3,4,5. Here we use a set of numerical dynamo models to derive scaling relations between the core's characteristic dissipation time and the core's magnetic and hydrodynamic Reynolds numbers—dimensionless numbers that measure the ratio of advective transport to magnetic and viscous diffusion, respectively. The ohmic dissipation of the Karlsruhe dynamo experiment6 supports a simple dependence on the magnetic Reynolds number alone, indicating that flow turbulence in the experiment and in the Earth's core has little influence on its characteristic dissipation time. We use these results to predict moderate ohmic dissipation in the range of 0.2–0.5 TW, which removes the need for strong radioactive heating in the core7 and allows the age of the solid inner core to exceed 2.5 billion years.

Suggested Citation

  • Ulrich R. Christensen & Andreas Tilgner, 2004. "Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos," Nature, Nature, vol. 429(6988), pages 169-171, May.
  • Handle: RePEc:nat:nature:v:429:y:2004:i:6988:d:10.1038_nature02508
    DOI: 10.1038/nature02508
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02508
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:429:y:2004:i:6988:d:10.1038_nature02508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.