IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6983d10.1038_nature02424.html
   My bibliography  Save this article

Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae

Author

Listed:
  • Manolis Kellis

    (Massachusetts Institute of Technology and Harvard University
    MIT Computer Science and Artificial Intelligence Laboratory)

  • Bruce W. Birren

    (Massachusetts Institute of Technology and Harvard University)

  • Eric S. Lander

    (Massachusetts Institute of Technology and Harvard University
    Whitehead Institute for Biomedical Research)

Abstract

Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.

Suggested Citation

  • Manolis Kellis & Bruce W. Birren & Eric S. Lander, 2004. "Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae," Nature, Nature, vol. 428(6983), pages 617-624, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6983:d:10.1038_nature02424
    DOI: 10.1038/nature02424
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02424
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex N Nguyen Ba & Bob Strome & Jun Jie Hua & Jonathan Desmond & Isabelle Gagnon-Arsenault & Eric L Weiss & Christian R Landry & Alan M Moses, 2014. "Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    2. S Konini & E J Janse van Rensburg, 2017. "Mean field analysis of algorithms for scale-free networks in molecular biology," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-34, December.
    3. Lit-Hsin Loo & Danai Laksameethanasan & Yi-Ling Tung, 2014. "Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-17, March.
    4. Anupama Yadav & Aparna Radhakrishnan & Anshuman Panda & Amartya Singh & Himanshu Sinha & Gyan Bhanot, 2016. "The Modular Adaptive Ribosome," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6983:d:10.1038_nature02424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.