Author
Listed:
- Kazushige Tomeoka
(Kobe University)
- Koji Kiriyama
(Kobe University)
- Keiko Nakamura
(Kobe University
Office of Astromaterials Research and Exploration Science, NASA JSC)
- Yasuhiro Yamahana
(Kobe University)
- Toshimori Sekine
(National Institute for Materials Science)
Abstract
The Earth accretes about 30,000 tons of dust particles per year, with sizes in the range of 20–400 µm (refs 1, 2). Those particles collected at the Earth's surface—termed micrometeorites—are similar in chemistry and mineralogy to hydrated, porous meteorites3,4,5,6,7, but such meteorites comprise only 2.8% of recovered falls8. This large difference in relative abundances has been attributed to ‘filtering’ by the Earth's atmosphere9, that is, the porous meteorites are considered to be so friable that they do not survive the impact with the atmosphere. Here we report shock-recovery experiments on two porous meteorites, one of which is hydrated and the other is anhydrous. The application of shock to the hydrated meteorite reduces it to minute particles and explosive expansion results upon release of the pressure, through a much broader range of pressures than for the anhydrous meteorite. Our results indicate that hydrated asteroids will produce dust particles during collisions at a much higher rate than anhydrous asteroids, which explains the different relative abundances of the hydrated material in micrometeorites and meteorites: the abundances are established before contact with the Earth's atmosphere.
Suggested Citation
Kazushige Tomeoka & Koji Kiriyama & Keiko Nakamura & Yasuhiro Yamahana & Toshimori Sekine, 2003.
"Interplanetary dust from the explosive dispersal of hydrated asteroids by impacts,"
Nature, Nature, vol. 423(6935), pages 60-62, May.
Handle:
RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01567
DOI: 10.1038/nature01567
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01567. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.