Author
Listed:
- Alexander Saveliev
(Imperial College School of Medicine, Hammersmith Campus)
- Christopher Everett
(Imperial College School of Medicine, Hammersmith Campus)
- Tammy Sharpe
(Imperial College School of Medicine, Hammersmith Campus)
- Zoë Webster
(MRC Clinical Sciences Centre, Hammersmith Campus)
- Richard Festenstein
(Imperial College School of Medicine, Hammersmith Campus
National Hospital for Neurology and Neurosurgery)
Abstract
Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin1 is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells1. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.
Suggested Citation
Alexander Saveliev & Christopher Everett & Tammy Sharpe & Zoë Webster & Richard Festenstein, 2003.
"DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing,"
Nature, Nature, vol. 422(6934), pages 909-913, April.
Handle:
RePEc:nat:nature:v:422:y:2003:i:6934:d:10.1038_nature01596
DOI: 10.1038/nature01596
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6934:d:10.1038_nature01596. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.