IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6930d10.1038_nature01521.html
   My bibliography  Save this article

Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events

Author

Listed:
  • John E. Bowers

    (University of Georgia)

  • Brad A. Chapman

    (University of Georgia)

  • Junkang Rong

    (University of Georgia)

  • Andrew H. Paterson

    (University of Georgia)

Abstract

Conservation of gene order in vertebrates is evident after hundreds of millions of years of divergence1,2, but comparisons of the Arabidopsis thaliana sequence3 to partial gene orders of other angiosperms (flowering plants) sharing common ancestry ∼170–235 million years ago4 yield conflicting results5,6,7,8,9,10,11. This difference may be largely due to the propensity of angiosperms to undergo chromosomal duplication (‘polyploidization’) and subsequent gene loss12 (‘diploidization’); these evolutionary mechanisms have profound consequences for comparative biology. Here we integrate a phylogenetic approach (relating chromosomal duplications to the tree of life) with a genomic approach (mitigating information lost to diploidization) to show that a genome-wide duplication3,13,14,15,16,17 post-dates the divergence of Arabidopsis from most dicots. We also show that an inferred ancestral gene order for Arabidopsis reveals more synteny with other dicots (exemplified by cotton), and that additional, more ancient duplication events affect more distant taxonomic comparisons. By using partial sequence data for many diverse taxa to better relate the evolutionary history of completely sequenced genomes to the tree of life, we foster comparative approaches to the study of genome organization, consequences of polyploidy, and the molecular basis of quantitative traits.

Suggested Citation

  • John E. Bowers & Brad A. Chapman & Junkang Rong & Andrew H. Paterson, 2003. "Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events," Nature, Nature, vol. 422(6930), pages 433-438, March.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6930:d:10.1038_nature01521
    DOI: 10.1038/nature01521
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01521
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Feng & Qipian Chen & Weihong Wu & Jiexin Wang & Guohong Li & Shaohua Xu & Shao Shao & Min Liu & Cairong Zhong & Chung-I Wu & Suhua Shi & Ziwen He, 2024. "Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Adam M. Session & Daniel S. Rokhsar, 2023. "Transposon signatures of allopolyploid genome evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6930:d:10.1038_nature01521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.