IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6928d10.1038_nature01511.html
   My bibliography  Save this article

Mass spectrometry-based proteomics

Author

Listed:
  • Ruedi Aebersold

    (Institute for Systems Biology)

  • Matthias Mann

    (Center for Experimental BioInformatics(CEBI), University of Southern Denmark)

Abstract

Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein–protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.

Suggested Citation

  • Ruedi Aebersold & Matthias Mann, 2003. "Mass spectrometry-based proteomics," Nature, Nature, vol. 422(6928), pages 198-207, March.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01511
    DOI: 10.1038/nature01511
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01511
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    2. Jinfeng Zou & Guini Hong & Xinwu Guo & Lin Zhang & Chen Yao & Jing Wang & Zheng Guo, 2011. "Reproducible Cancer Biomarker Discovery in SELDI-TOF MS Using Different Pre-Processing Algorithms," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    3. Karsten Suhre & Guhan Ram Venkataraman & Harendra Guturu & Anna Halama & Nisha Stephan & Gaurav Thareja & Hina Sarwath & Khatereh Motamedchaboki & Margaret K. R. Donovan & Asim Siddiqui & Serafim Batz, 2024. "Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Giovanni Micale & Alfredo Pulvirenti & Rosalba Giugno & Alfredo Ferro, 2014. "GASOLINE: a Greedy And Stochastic algorithm for Optimal Local multiple alignment of Interaction NEtworks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-15, June.
    5. Naomi S Hachiya, 2017. "Unfoldin, A Novel Tool for the Analysis of Protein Misfolding or Neurodegenerative Diseases," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 6(3), pages 40-44, October.
    6. Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Patrick Leopold Rüther & Immanuel Mirnes Husic & Pernille Bangsgaard & Kristian Murphy Gregersen & Pernille Pantmann & Milena Carvalho & Ricardo Miguel Godinho & Lukas Friedl & João Cascalheira & Albe, 2022. "SPIN enables high throughput species identification of archaeological bone by proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Jacques Colinge & Keiryn L Bennett, 2007. "Introduction to Computational Proteomics," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-10, July.
    9. Hannes L Röst & Uwe Schmitt & Ruedi Aebersold & Lars Malmström, 2015. "Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-11, April.
    10. Brar, D.S. & Mackill, D.J. & Hardy, Bill (ed.), 2007. "Rice Genetics V- Proceedings of the Fifth International Rice Genetics Symposium," IRRI Books, International Rice Research Institute (IRRI), number 164486.
    11. Wei Feng & Joanne C. Beer & Qinyu Hao & Ishara S. Ariyapala & Aparna Sahajan & Andrei Komarov & Katie Cha & Mason Moua & Xiaolei Qiu & Xiaomei Xu & Shweta Iyengar & Thu Yoshimura & Rajini Nagaraj & Li, 2023. "NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Łuksza Marta & Kluge Bogusław & Ostrowski Jerzy & Karczmarski Jakub & Gambin Anna, 2009. "Two-Stage Model-Based Clustering for Liquid Chromatography Mass Spectrometry Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, February.
    13. Kong Ao & Azencott Robert, 2017. "Binary Markov Random Fields and interpretable mass spectra discrimination," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 13-30, March.
    14. Tianhai Tian & Jiangning Song, 2012. "Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    15. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    16. Mertens, B.J.A. & van der Burgt, Y.E.M. & Velstra, B. & Mesker, W.E. & Tollenaar, R.A.E.M. & Deelder, A.M., 2011. "On the use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagnosis and prediction," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 759-766, July.
    17. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    18. Dayle L Sampson & Tony J Parker & Zee Upton & Cameron P Hurst, 2011. "A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    19. Guler, Arzu Tugce & Waaijer, Cathelijn J.F. & Mohammed, Yassene & Palmblad, Magnus, 2016. "Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services," Journal of Informetrics, Elsevier, vol. 10(3), pages 830-841.
    20. Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    21. Jiang Tan & Hui-Zhen Fu & Yuh-Shan Ho, 2014. "A bibliometric analysis of research on proteomics in Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1473-1490, February.
    22. Stephan Krueger & Patrick Giavalisco & Leonard Krall & Marie-Caroline Steinhauser & Dirk Büssis & Bjoern Usadel & Ulf-Ingo Flügge & Alisdair R Fernie & Lothar Willmitzer & Dirk Steinhauser, 2011. "A Topological Map of the Compartmentalized Arabidopsis thaliana Leaf Metabolome," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-16, March.
    23. Yun Xu & Wolfgang Schrader, 2021. "Studying the Complexity of Biomass Derived Biofuels," Energies, MDPI, vol. 14(8), pages 1-13, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.