IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v418y2002i6896d10.1038_nature00895.html
   My bibliography  Save this article

The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation

Author

Listed:
  • Yuri T. Didenko

    (University of Illinois at Urbana-Champaign)

  • Kenneth S. Suslick

    (University of Illinois at Urbana-Champaign)

Abstract

It is extremely difficult to perform a quantitative analysis of the chemistry1,2 associated with multibubble cavitation: unknown parameters include the number of active bubbles, the acoustic pressure acting on each bubble and the bubble size distribution. Single-bubble sonoluminescence3,4,5,6,7 (characterized by the emission of picosecond flashes of light) results from nonlinear pulsations of an isolated vapour-gas bubble in an acoustic field. Although the latter offers a much simpler environment in which to study the chemical activity of cavitation, quantitative measurements have been hindered by the tiny amount of reacting gas within a single bubble (typically

Suggested Citation

  • Yuri T. Didenko & Kenneth S. Suslick, 2002. "The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation," Nature, Nature, vol. 418(6896), pages 394-397, July.
  • Handle: RePEc:nat:nature:v:418:y:2002:i:6896:d:10.1038_nature00895
    DOI: 10.1038/nature00895
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00895
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Prokaznikov & Niels Tas & Vitaly Svetovoy, 2017. "Surface Assisted Combustion of Hydrogen-Oxygen Mixture in Nanobubbles Produced by Electrolysis," Energies, MDPI, vol. 10(2), pages 1-10, February.
    2. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Liguo Song & Yuhang Wei & Chengqi Deng & Jingang Yang & Hao Sui & Feng Guo & Lingrun Meng & Xingda Zhao & Shiping Wei & Deping Sun & Zhitao Han & Minyi Xu & Xinxiang Pan, 2023. "A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO 2," IJERPH, MDPI, vol. 20(4), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6896:d:10.1038_nature00895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.