IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6874d10.1038_nature724.html
   My bibliography  Save this article

The genome sequence of Schizosaccharomyces pombe

Author

Listed:
  • V. Wood

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • R. Gwilliam

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M.-A. Rajandream

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M. Lyne

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • R. Lyne

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • A. Stewart

    (Cancer Research UK London Research Institute, Computational Genome Analysis Laboratory)

  • J. Sgouros

    (Cancer Research UK London Research Institute, Computational Genome Analysis Laboratory)

  • N. Peat

    (Cancer Research UK London Research Institute, Cell Cycle Laboratory)

  • J. Hayles

    (Cancer Research UK London Research Institute, Cell Cycle Laboratory)

  • S. Baker

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Basham

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Bowman

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Brooks

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Brown

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Brown

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • T. Chillingworth

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • C. Churcher

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M. Collins

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • R. Connor

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • A. Cronin

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • P. Davis

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • T. Feltwell

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • A. Fraser

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Gentles

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • A. Goble

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • N. Hamlin

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Harris

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • J. Hidalgo

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • G. Hodgson

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Holroyd

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • T. Hornsby

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Howarth

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • E. J. Huckle

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Hunt

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Jagels

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. James

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • L. Jones

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M. Jones

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Leather

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. McDonald

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • J. McLean

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • P. Mooney

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Moule

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Mungall

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • L. Murphy

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Niblett

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • C. Odell

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Oliver

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. O'Neil

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Pearson

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M. A. Quail

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • E. Rabbinowitsch

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Rutherford

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Rutter

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • D. Saunders

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Seeger

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Sharp

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • J. Skelton

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • M. Simmonds

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • R. Squares

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Squares

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Stevens

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • K. Taylor

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • R. G. Taylor

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • A. Tivey

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Walsh

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • T. Warren

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • S. Whitehead

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • J. Woodward

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • G. Volckaert

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • R. Aert

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • J. Robben

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • B. Grymonprez

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • I. Weltjens

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • E. Vanstreels

    (Katholieke Universiteit Leuven, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Gene Technology, Kardinaal Mercierlaan 92 Blok F)

  • M. Rieger

    (Genotype GmbH, Molecular Biology and Biotech Research)

  • M. Schäfer

    (Genotype GmbH, Molecular Biology and Biotech Research)

  • S. Müller-Auer

    (Genotype GmbH, Molecular Biology and Biotech Research)

  • C. Gabel

    (Genotype GmbH, Molecular Biology and Biotech Research)

  • M. Fuchs

    (Genotype GmbH, Molecular Biology and Biotech Research)

  • C. Fritzc

    (QIAGEN GmbH)

  • E. Holzer

    (QIAGEN GmbH)

  • D. Moestl

    (QIAGEN GmbH)

  • H. Hilbert

    (QIAGEN GmbH)

  • K. Borzym

    (Max-Planck-Institut für molekulare Genetik)

  • I. Langer

    (Max-Planck-Institut für molekulare Genetik)

  • A. Beck

    (Max-Planck-Institut für molekulare Genetik)

  • H. Lehrach

    (Max-Planck-Institut für molekulare Genetik)

  • R. Reinhardt

    (Max-Planck-Institut für molekulare Genetik)

  • T. M. Pohl

    (GATC Biotech AG)

  • P. Eger

    (GATC Biotech AG)

  • W. Zimmermann

    (AGOWA GmbH)

  • H. Wedler

    (AGOWA GmbH)

  • R. Wambutt

    (AGOWA GmbH)

  • B. Purnelle

    (Université de Louvain, Unite de Biochimie Physiologique)

  • A. Goffeau

    (Université de Louvain, Unite de Biochimie Physiologique)

  • E. Cadieu

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • S. Dréano

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • S. Gloux

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • V. Lelaure

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • S. Mottier

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • F. Galibert

    (UMR 6061 CNRS Genetique et developpement, Faculté de Médecine)

  • S. J. Aves

    (University of Exeter, School of Biological Sciences, Washington Singer Laboratories)

  • Z. Xiang

    (University of Exeter, School of Biological Sciences, Washington Singer Laboratories)

  • C. Hunt

    (University of Exeter, School of Biological Sciences, Washington Singer Laboratories)

  • K. Moore

    (University of Exeter, School of Biological Sciences, Washington Singer Laboratories)

  • S. M. Hurst

    (University of Exeter, School of Biological Sciences, Washington Singer Laboratories)

  • M. Lucas

    (Génétique Moléculaire et Cellulaire, CNRS URA1925 INRA UMR216, Institut National Agronomique Paris-Grignon)

  • M. Rochet

    (Génétique Moléculaire et Cellulaire, CNRS URA1925 INRA UMR216, Institut National Agronomique Paris-Grignon)

  • C. Gaillardin

    (Génétique Moléculaire et Cellulaire, CNRS URA1925 INRA UMR216, Institut National Agronomique Paris-Grignon)

  • V. A. Tallada

    (Facultad de Ciencias, Universidad de Malaga
    Laboratorio Andaluz de Biologia, Universidad Pablo de Olavide)

  • A. Garzon

    (Facultad de Ciencias, Universidad de Malaga
    Laboratorio Andaluz de Biologia, Universidad Pablo de Olavide)

  • G. Thode

    (Facultad de Ciencias, Universidad de Malaga)

  • R. R. Daga

    (Facultad de Ciencias, Universidad de Malaga
    Laboratorio Andaluz de Biologia, Universidad Pablo de Olavide)

  • L. Cruzado

    (Facultad de Ciencias, Universidad de Malaga)

  • J. Jimenez

    (Facultad de Ciencias, Universidad de Malaga
    Laboratorio Andaluz de Biologia, Universidad Pablo de Olavide)

  • M. Sánchez

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • F. del Rey

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • J. Benito

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • A. Domínguez

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • J. L. Revuelta

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • S. Moreno

    (Instituto de Microbiología y Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno)

  • J. Armstrong

    (University of Sussex, Falmer)

  • S. L. Forsburg

    (Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies)

  • L. Cerrutti

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • T. Lowe

    (Stanford University, Stanford University School of Medicine, CCSR Room 2255b)

  • W. R. McCombie

    (Cold Spring Harbor Laboratory, PO Box 100)

  • I. Paulsen

    (TIGR)

  • J. Potashkin

    (The Chicago Medical School)

  • G. V. Shpakovski

    (Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences)

  • D. Ussery

    (Center for Biological Sequence Analysis, BioCentrum-DTU, The Technical University of Denmark, Building 208)

  • B. G. Barrell

    (The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton)

  • P. Nurse

    (Cancer Research UK London Research Institute, Cell Cycle Laboratory)

Abstract

We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

Suggested Citation

  • V. Wood & R. Gwilliam & M.-A. Rajandream & M. Lyne & R. Lyne & A. Stewart & J. Sgouros & N. Peat & J. Hayles & S. Baker & D. Basham & S. Bowman & K. Brooks & D. Brown & S. Brown & T. Chillingworth & C, 2002. "The genome sequence of Schizosaccharomyces pombe," Nature, Nature, vol. 415(6874), pages 871-880, February.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6874:d:10.1038_nature724
    DOI: 10.1038/nature724
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature724
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6874:d:10.1038_nature724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.