Author
Listed:
- A. S. Mel'nikov
(Institute for Physics of Microstructures, Russian Academy of Sciences
Argonne National Laboratory)
- V. M. Vinokur
(Argonne National Laboratory)
Abstract
Several key experiments1,2,3 have revealed a rich variety of vortex structures in mesoscopic superconductors in which only a few quanta of magnetic flux are trapped: these structures are polygon-like vortex ‘molecules’ and multi-quanta giant vortices. Ginzburg–Landau calculations4 confirmed second-order phase transitions between the giant vortex states and stable molecule-like configurations5. Here we study theoretically the electronic structure and the related phase-coherent transport properties of such mesoscopic superconductor systems. The quasiparticle excitations in the vortices form coherent quantum-mechanical states that offer the possibility of controlling the phase-coherent transport through the sample by changing the number of trapped flux quanta and their configuration. The sample conductance measured in the direction of the applied magnetic field is determined by the transparency of multi-vortex configurations, which form a set of quantum channels. The transmission coefficient for each channel is controlled by multiple Andreev reflections within the vortex cores and at the sample edge. These interference phenomena result in a stepwise behaviour of the conductance as a function of the applied magnetic field, and we propose to exploit this effect to realize a vortex-based quantum switch where the magnetic field plays the role of the gate voltage.
Suggested Citation
A. S. Mel'nikov & V. M. Vinokur, 2002.
"Mesoscopic superconductor as a ballistic quantum switch,"
Nature, Nature, vol. 415(6867), pages 60-62, January.
Handle:
RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415060a
DOI: 10.1038/415060a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415060a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.