IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6849d10.1038_35090558.html
   My bibliography  Save this article

Tectonic contraction across Los Angeles after removal of groundwater pumping effects

Author

Listed:
  • Gerald W. Bawden

    (United States Geological Survey)

  • Wayne Thatcher

    (United States Geological Survey)

  • Ross S. Stein

    (United States Geological Survey)

  • Ken W. Hudnut

    (United States Geological Survey)

  • Gilles Peltzer

    (University of California)

Abstract

After the 1987 Whittier Narrows1 and 1994 Northridge2 earthquakes revealed that blind thrust faults represent a significant threat to metropolitan Los Angeles3, a network of 250 continuously recording global positioning system (GPS) stations4,5 was deployed to monitor displacements associated with deep slip on both blind and surface faults. Here we augment this GPS data with interferometric synthetic aperture radar imagery to take into account the deformation associated with groundwater pumping and strike-slip faulting. After removing these non-tectonic signals, we are left with 4.4 mm yr-1 of uniaxial contraction across the Los Angeles basin, oriented N 36° E (perpendicular to the major strike-slip faults in the area). This indicates that the contraction is primarily accommodated on thrust faults6 rather than on the northeast-trending strike–slip faults. We have found that widespread groundwater and oil pumping obscures and in some cases mimics the tectonic signals expected from the blind thrust faults. In the 40-km-long Santa Ana basin, groundwater withdrawal and re-injection produces 12 mm yr-1 of long-term subsidence, accompanied by an unprecedented seasonal oscillation of 55 mm in the vertical direction and 7 mm horizontally.

Suggested Citation

  • Gerald W. Bawden & Wayne Thatcher & Ross S. Stein & Ken W. Hudnut & Gilles Peltzer, 2001. "Tectonic contraction across Los Angeles after removal of groundwater pumping effects," Nature, Nature, vol. 412(6849), pages 812-815, August.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6849:d:10.1038_35090558
    DOI: 10.1038/35090558
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35090558
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35090558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakan Kutoglu & Huseyin Kemaldere & Tomonori Deguchı & Mustafa Berber, 2014. "Discovering a pull-apart basin using InSAR in Bursa, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 871-880, March.
    2. Shujuan Mao & Albanne Lecointre & Robert D. van der Hilst & Michel Campillo, 2022. "Space-time monitoring of groundwater fluctuations with passive seismic interferometry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Minsi Ao & Changcheng Wang & Rongan Xie & Xingqing Zhang & Jun Hu & Yanan Du & Zhiwei Li & Jianjun Zhu & Wujiao Dai & Cuilin Kuang, 2015. "Monitoring the land subsidence with persistent scatterer interferometry in Nansha District, Guangdong, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2947-2964, February.
    4. Mabkhoot Alsaiari & Basil Onyekayahweh Nwafor & Maman Hermana & Al Marzouki Hassan H. M. & Mohammed Irfan, 2023. "Understanding the Mechanisms of Earth Fissuring for Hazard Mitigation in Najran, Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    5. Shuang Zhang & Lichun Sui & Rongrong Zhou & Zhangyuan Xun & Chengyan Du & Xiao Guo, 2022. "Mountainous SAR Image Registration Using Image Simulation and an L 2 E Robust Estimator," Sustainability, MDPI, vol. 14(15), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6849:d:10.1038_35090558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.