IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6785d10.1038_35013033.html
   My bibliography  Save this article

Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios

Author

Listed:
  • H. Elderfield

    (University of Cambridge)

  • G. Ganssen

    (University of Cambridge)

Abstract

Determining the past record of temperature and salinity of ocean surface waters is essential for understanding past changes in climate, such as those which occur across glacial–interglacial transitions. As a useful proxy, the oxygen isotope composition (δ18O) of calcite from planktonic foraminifera has been shown to reflect both surface temperature and seawater δ18O, itself an indicator of global ice volume and salinity1,2. In addition, magnesium/calcium (Mg/Ca) ratios in foraminiferal calcite show a temperature dependence3,4,5 due to the partitioning of Mg during calcification. Here we demonstrate, in a field-based calibration experiment, that the variation of Mg/Ca ratios with temperature is similar for eight species of planktonic foraminifera (when accounting for Mg dissolution effects). Using a multi-species record from the Last Glacial Maximum in the North Atlantic Ocean we found that past temperatures reconstructed from Mg/Ca ratios followed the two other palaeotemperature proxies: faunal abundance6,7 and alkenone saturation8. Moreover, combining Mg/Ca and δ18O data from the same faunal assemblage, we show that reconstructed surface water δ18O from all foraminiferal species record the same glacial–interglacial change—representing changing hydrography and global ice volume. This reinforces the potential of this combined technique in probing past ocean–climate interactions.

Suggested Citation

  • H. Elderfield & G. Ganssen, 2000. "Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios," Nature, Nature, vol. 405(6785), pages 442-445, May.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013033
    DOI: 10.1038/35013033
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35013033
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35013033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Dai & Jimin Yu & Haojia Ren & Xuan Ji, 2022. "Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Hongrui Zhang & Yongsong Huang & Reto Wijker & Isabel Cacho & Judit Torner & Madeleine Santos & Oliver Kost & Bingbing Wei & Heather Stoll, 2023. "Iberian Margin surface ocean cooling led freshening during Marine Isotope Stage 6 abrupt cooling events," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.