IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6781d10.1038_35010053.html
   My bibliography  Save this article

Identification of molecular-cloud material in interplanetary dust particles

Author

Listed:
  • Scott Messenger

    (McDonnell Center for the Space Sciences, Washington University)

Abstract

Interplanetary dust particles (IDPs) collected in the Earth's stratosphere and meteorites are fragments of comets and asteroids. These are ‘primitive’ meteorites in part because they have preserved materials which predate the formation of the Solar System. The most primitive (least altered) meteorites contain a few parts per million of micrometre-sized dust which formed in the atmospheres of giant stars1. Some meteorites2 have elevated D/H and 15N/14N ratios that are attributed to surviving interstellar organic molecules which have probably been strongly diluted and altered by parent-body processes2. Most IDPs are chemically, mineralogically, and texturally primitive in comparison to meteorites3,4. Here I show that H and N isotopic anomalies among fragile ‘cluster’ IDPs are far larger, more common, and less equilibrated than those previously observed in other IDPs or meteorites. In some cases, the D/H ratios that we measure reach the values of interstellar molecules, suggesting that molecular-cloud material has survived intact. These observations indicate that cluster IDPs are the most primitive class of Solar System materials currently available for laboratory analysis.

Suggested Citation

  • Scott Messenger, 2000. "Identification of molecular-cloud material in interplanetary dust particles," Nature, Nature, vol. 404(6781), pages 968-971, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6781:d:10.1038_35010053
    DOI: 10.1038/35010053
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35010053
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35010053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6781:d:10.1038_35010053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.