IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6765d10.1038_47501.html
   My bibliography  Save this article

Turning of nerve growth cones induced by localized increases in intracellular calcium ions

Author

Listed:
  • James Q. Zheng

    (University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School)

Abstract

Guidance of developing axons involves turning of the motile tip, the growth cone, in response to a variety of extracellular cues1,2. Little is known about the intracellular mechanism by which the directional signal is transduced. Ca2+ is a key second messenger in growth cone extension3,4 and has been implicated in growth-cone turning5,6. Here I report that a direct, spatially restricted elevation of intracellular Ca2+ concentration ([Ca2+]i) on one side of the growth cone by focal laser-induced photolysis (FLIP) of caged Ca2+ consistently induced turning of the growth cone to the side with elevated [Ca2+]i (attraction). Furthermore, when the resting [Ca2+]i at the growth cone was decreased by the removal of extracellular Ca2+, the same focal elevation of [Ca2+]i by FLIP induced repulsion. These results provide direct evidence that a localized Ca2+ signal in the growth cone can provide the intracellular directional cue for extension and is sufficient to initiate both attraction and repulsion. By integrating local and global Ca2+ signals, a growth cone could thus generate different turning responses under different environmental conditions during guidance.

Suggested Citation

  • James Q. Zheng, 2000. "Turning of nerve growth cones induced by localized increases in intracellular calcium ions," Nature, Nature, vol. 403(6765), pages 89-93, January.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6765:d:10.1038_47501
    DOI: 10.1038/47501
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/47501
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/47501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6765:d:10.1038_47501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.