IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6759d10.1038_46248.html
   My bibliography  Save this article

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

Author

Listed:
  • Hailian Li

    (Arizona State University)

  • Mohamed Eddaoudi

    (University of Michigan)

  • M. O'Keeffe

    (Arizona State University)

  • O. M. Yaghi

    (University of Michigan)

Abstract

Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

Suggested Citation

  • Hailian Li & Mohamed Eddaoudi & M. O'Keeffe & O. M. Yaghi, 1999. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework," Nature, Nature, vol. 402(6759), pages 276-279, November.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6759:d:10.1038_46248
    DOI: 10.1038/46248
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/46248
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/46248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinhe Ye & Lai-Hon Chung & Kedi Li & Saili Zheng & Yan-Lung Wong & Zihao Feng & Yonghe He & Dandan Chu & Zhengtao Xu & Lin Yu & Jun He, 2022. "Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Simon N. Deger & Sebastian J. Weishäupl & Alexander Pöthig & Roland A. Fischer, 2022. "A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation," Energies, MDPI, vol. 15(7), pages 1-12, March.
    3. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Wang, Pengfei & Teng, Ying & Zhu, Jinlong & Bao, Wancheng & Han, Songbai & Li, Yun & Zhao, Yusheng & Xie, Heping, 2022. "Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Xueqiao Mei & Han Yuan & Chunhu Li, 2023. "Study on the MOF Frame Pt-TiO 2 Hybrid Photocatalyst and Its Photocatalytic Performance," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    10. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    11. Vasileios Ntouros & Ioannis Kousis & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2022. "Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application," Energies, MDPI, vol. 15(4), pages 1-21, February.
    12. Sun, Baichuan & Kayal, Sibnath & Chakraborty, Anutosh, 2014. "Study of HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-carlo) simulation," Energy, Elsevier, vol. 76(C), pages 419-427.
    13. Lixia Wu & Yu Zhu & Jing Yuan & Xiaozhong Guo & Qianfeng Zhang, 2024. "Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries," Energies, MDPI, vol. 17(8), pages 1-30, April.
    14. Mohammed, Ramy H. & Rezk, Ahmed & Askalany, Ahmed & Ali, Ehab S. & Zohir, A.E. & Sultan, Muhammad & Ghazy, Mohamed & Abdelkareem, Mohammad Ali & Olabi, A.G., 2021. "Metal-organic frameworks in cooling and water desalination: Synthesis and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Sunil Dutt & Ashwani Kumar & Shivendra Singh, 2023. "Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications," Clean Technol., MDPI, vol. 5(1), pages 1-27, January.
    16. Danxia Liu & Xiaolong Yang & Lin Zhang & Yiyan Tang & Huijun He & Meina Liang & Zhihong Tu & Hongxiang Zhu, 2022. "Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    17. Xinxing Peng & Philipp M. Pelz & Qiubo Zhang & Peican Chen & Lingyun Cao & Yaqian Zhang & Hong-Gang Liao & Haimei Zheng & Cheng Wang & Shi-Gang Sun & Mary C. Scott, 2022. "Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Daniil Salionov & Olesya O. Semivrazhskaya & Nicola P. M. Casati & Marco Ranocchiari & Saša Bjelić & René Verel & Jeroen A. Bokhoven & Vitaly L. Sushkevich, 2022. "Unraveling the molecular mechanism of MIL-53(Al) crystallization," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6759:d:10.1038_46248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.