IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6736d10.1038_21124.html
   My bibliography  Save this article

Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1

Author

Listed:
  • Hongxu Qin

    (Department of Chemistry and)

  • Srinivasa M. Srinivasula

    (Kimmel Cancer Center, Thomas Jefferson University)

  • Geng Wu

    (Department of Chemistry and)

  • Teresa Fernandes-Alnemri

    (Kimmel Cancer Center, Thomas Jefferson University)

  • Emad S. Alnemri

    (Kimmel Cancer Center, Thomas Jefferson University)

  • Yigong Shi

    (Princeton University)

Abstract

Caspase-9-mediated apoptosis (programmed cell death) plays a central role in the development and homeostasis of all multicellular organisms. Mature caspase-9 is derived from its procaspase precursor as a result of recruitment by the activating factor Apaf-1. The crystal structures of the caspase-recruitment domain of Apaf-1 by itself and in complex with the prodomain of procaspase-9 have been determined at 1.6 and 2.5 Å resolution, respectively. These structures and other evidence reveal that each molecule of Apaf-1 interacts with a molecule of procaspase-9 through two highly charged and complementary surfaces formed by non-conserved residues; these surfaces determine recognition specificity through networks of intermolecular hydrogen bonds and van der Waals interactions. Mutation of the important interface residues in procaspase-9 or Apaf-1 prevents or reduces activation of procaspase-9 in a cell-free system. Wild-type, but not mutant, prodomains of caspase-9 completely inhibit catalytic processing of procaspase-9. Furthermore, analysis of homologues from Caenorhabditis elegans indicates that recruitment of CED-3 by CED-4 is probably mediated by the same set of conserved structural motifs, with a corresponding change in the specificity-determining residues.

Suggested Citation

  • Hongxu Qin & Srinivasa M. Srinivasula & Geng Wu & Teresa Fernandes-Alnemri & Emad S. Alnemri & Yigong Shi, 1999. "Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1," Nature, Nature, vol. 399(6736), pages 549-557, June.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6736:d:10.1038_21124
    DOI: 10.1038/21124
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/21124
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/21124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Bryan Korithoski & Oralia Kolaczkowski & Krishanu Mukherjee & Reema Kola & Chandra Earl & Bryan Kolaczkowski, 2015. "Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6736:d:10.1038_21124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.