IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v396y1998i6706d10.1038_23912.html
   My bibliography  Save this article

Molecular-wire behaviour in p -phenylenevinylene oligomers

Author

Listed:
  • William B. Davis

    (Northwestern University)

  • Walter A. Svec

    (Argonne National Laboratory)

  • Mark A. Ratner

    (Northwestern University)

  • Michael R. Wasielewski

    (Northwestern University
    Argonne National Laboratory)

Abstract

Electron transfer from electron-donor to electron-acceptor molecules via a molecular ‘bridge’ is a feature of many biological andchemical systems. The electronic structure of the bridge component in donor–bridge–acceptor (DBA) systems is known to play a critical role in determining the ease of electron transfer1,2. In most DBA systems, the rate at which electron transfer occurs scales exponentially with the donor–acceptor distance — effectively the length of the bridge molecule. But theory predicts that regimes exist wherein the distance dependence may be very weak, the bridge molecules essentially acting as incoherent molecular wires3,4,5,6. Here we show how these regimes can be accessed by molecular design. We have synthesized a series of structurally well-defined DBA molecules that incorporate tetracene as the donor and pyromellitimide as the acceptor, linked by p -phenylenevinylene oligomers of various lengths. Photoinduced electron transfer in this series exhibits very weak distance dependence for donor–acceptor separations as large as 40 Å, with rate constants of the order of 1011 s−1. These findings demonstrate the importance of energy matching between the donor and bridge components for achieving molecular-wire behaviour.

Suggested Citation

  • William B. Davis & Walter A. Svec & Mark A. Ratner & Michael R. Wasielewski, 1998. "Molecular-wire behaviour in p -phenylenevinylene oligomers," Nature, Nature, vol. 396(6706), pages 60-63, November.
  • Handle: RePEc:nat:nature:v:396:y:1998:i:6706:d:10.1038_23912
    DOI: 10.1038/23912
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/23912
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/23912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuela Gatto & Raffaella Lettieri & Luigi Vesce & Mariano Venanzi, 2022. "Peptide Materials in Dye Sensitized Solar Cells," Energies, MDPI, vol. 15(15), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:396:y:1998:i:6706:d:10.1038_23912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.