IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6630d10.1038_387296a0.html
   My bibliography  Save this article

Mdm2 promotes the rapid degradation of p53

Author

Listed:
  • Ygal Haupt

    (The Hebrew University Haddassah Medical School)

  • Ruth Maya

    (The Weizmann Institute of Science)

  • Anat Kazaz

    (The Weizmann Institute of Science)

  • Moshe Oren

    (The Weizmann Institute of Science)

Abstract

The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress1. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins1,2. The Mdm2 oncoprotein is a potent inhibitor of p53 (ref. 3). Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes3,4 and to exert antiproliferative effects4–7. On the other hand, p53 activates the expression of the mdm2 gene1 in an autoregulatory feedback loop3. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects8. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

Suggested Citation

  • Ygal Haupt & Ruth Maya & Anat Kazaz & Moshe Oren, 1997. "Mdm2 promotes the rapid degradation of p53," Nature, Nature, vol. 387(6630), pages 296-299, May.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6630:d:10.1038_387296a0
    DOI: 10.1038/387296a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/387296a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/387296a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jing Li & Yang Tang & Liu Huang & Qianqian Yu & Guangyuan Hu & Xianglin Yuan, 2016. "Genetic Variants in the p14ARF/MDM2/TP53 Pathway Are Associated with the Prognosis of Esophageal Squamous Cell Carcinoma Patients Treated with Radical Resection," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-11, July.
    3. Hao Yan & Wentong Wu & Yuhuai Hu & Jinjin Li & Jiangxin Xu & Xueqin Chen & Zhifei Xu & Xiaochun Yang & Bo Yang & Qiaojun He & Peihua Luo, 2023. "Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Bo Liu & Shiwei Yan & Xingfa Gao, 2011. "Noise Amplification in Human Tumor Suppression following Gamma Irradiation," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    5. Tomoe Ueyama & Shu Nakao & Tasuku Tsukamoto & Dai Ihara & Yukihiro Harada & Yuka Akagi & Sae Nakagawa & Teruhisa Kawamura & Takahiro Sogo & Yasuyuki S Kida, 2018. "PTEN/Akt Axis is Involved in Somatic Cell Reprogramming to Mouse iPS Cells," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 11(5), pages 8789-8795, December.
    6. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    7. Ying-Yu Ma & Tian-Pei Guan & Hai-Bo Yao & Sheng Yu & Le-Gao Chen & Ying-Jie Xia & Xu-Jun He & Hui-Ju Wang & Xiao-Ting Jiang & Hou-Quan Tao, 2013. "The MDM2 309T>G Polymorphism and Ovarian Cancer Risk: A Meta-Analysis of 1534 Cases and 2211 Controls," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-6, January.
    8. Yong Ma & Jianmin Bian & Hongyong Cao, 2013. "MDM2 SNP309 rs2279744 Polymorphism and Gastric Cancer Risk: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-5, February.
    9. Clara Morral & Arshad Ayyaz & Hsuan-Cheng Kuo & Mardi Fink & Ioannis I. Verginadis & Andrea R. Daniel & Danielle N. Burner & Lucy M. Driver & Sloane Satow & Stephanie Hasapis & Reem Ghinnagow & Lixia , 2024. "p53 promotes revival stem cells in the regenerating intestine after severe radiation injury," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6630:d:10.1038_387296a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.