IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v386y1997i6621d10.1038_386164a0.html
   My bibliography  Save this article

Spurious trends in satellite MSU temperatures from merging different satellite records

Author

Listed:
  • James W. Hurrell

    (National Center for Atmospheric Research)

  • Kevin E. Trenberth

    (National Center for Atmospheric Research)

Abstract

Analysis of global surface air temperature records has indicated that recent years have been among the warmest since the late nineteenth century1, with 1995 being the warmest year on record2. But the rate of global annual mean surface warming of 0.13 °C per decade during the period 1979–95 differs substantially from the global lower-tropospheric cooling trend of – 0.05 °C per decade3 Inferred from the record (MSU-2R) of radiance measurements by the satellite Microwave Sounder Unit (MSU)4,5. Accordingly, the satellite record has been widely cited by sceptics as evidence against global warming6–10. However, a substantial fraction of the measured radiance originates not from the atmosphere but from the Earth's surface11, and gives rise to high noise levels. This noise can lead to errors when merging temperature time series obtained from different satellites. Here we present comparisons among different MSU retrievals, sea surface temperatures (SSTs), and equivalent MSU temperatures derived from an atmospheric general circulation model forced with observed SSTs. The comparisons, focused on the tropics where atmospheric temperatures are closely tied to SSTs, strongly suggest that two spurious downward jumps occur in the MSU-2R record coinciding with changes in satellites, and that the real trend in MSU temperatures is likely to be positive, albeit small.

Suggested Citation

  • James W. Hurrell & Kevin E. Trenberth, 1997. "Spurious trends in satellite MSU temperatures from merging different satellite records," Nature, Nature, vol. 386(6621), pages 164-167, March.
  • Handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386164a0
    DOI: 10.1038/386164a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/386164a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/386164a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshiyuki Ninomiya, 2015. "Change-point model selection via AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 943-961, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386164a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.