IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i12d10.1038_s41893-023-01203-8.html
   My bibliography  Save this article

Sensitive tree species remain at risk despite improved air quality benefits to US forests

Author

Listed:
  • Justin G. Coughlin

    (US Environmental Protection Agency Region 5)

  • Christopher M. Clark

    (US Environmental Protection Agency)

  • Linda H. Pardo

    (USDA Forest Service)

  • Robert D. Sabo

    (US Environmental Protection Agency)

  • Jeremy D. Ash

    (USDA Forest Service)

Abstract

Atmospheric nitrogen (N) and sulfur (S) deposition can significantly affect forest biodiversity and production by altering the growth and survival of trees. Three decades of air quality regulations in the United States have led to large reductions in oxides of N (44–81%) and S (50–99%) emissions and associated deposition. Here we evaluated the magnitude and extent of effects over 20 years from atmospheric N and S deposition on the growth and survival of 94 tree species—representing 96.4 billion trees and an average of 88% of forest basal area across the contiguous United States (CONUS). Overall, species’ growth and survival rates have responded positively to declining deposition, but we find that decreases of at least 2.5 kg ha−1 yr−1 N are needed across 19.8% (growth) and 59.5% (survival) of the CONUS to prevent detrimental effects to sensitive species. Reduced forms of N (NHx = NH3 + NH4+) are now the dominant form of N deposition in 45.4% of the CONUS—notably in agricultural regions—and exclusively need to be reduced by ≥5.0 kg ha−1 yr−1 N in some areas. Further S deposition decreases of ≥1.0 kg ha−1 yr−1 S are needed in 50.4% (growth) and 56.2% (survival) of the CONUS to protect sensitive species and, notably, evergreen trees. Total basal area is increasing in much of the country (85.2%) because of N fertilizing effects, but these growth increases could result in biodiversity loss. Our findings can be used to evaluate past successes of air quality policies and the future benefits of air pollution reductions to terrestrial ecosystems.

Suggested Citation

  • Justin G. Coughlin & Christopher M. Clark & Linda H. Pardo & Robert D. Sabo & Jeremy D. Ash, 2023. "Sensitive tree species remain at risk despite improved air quality benefits to US forests," Nature Sustainability, Nature, vol. 6(12), pages 1607-1619, December.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:12:d:10.1038_s41893-023-01203-8
    DOI: 10.1038/s41893-023-01203-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01203-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01203-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:12:d:10.1038_s41893-023-01203-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.