IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v5y2022i4d10.1038_s41893-021-00843-y.html
   My bibliography  Save this article

A large but transient carbon sink from urbanization and rural depopulation in China

Author

Listed:
  • Xiaoxin Zhang

    (University of Copenhagen)

  • Martin Brandt

    (University of Copenhagen)

  • Xiaowei Tong

    (University of Copenhagen)

  • Philippe Ciais

    (CEA-CNRS-UVSQ, CE Orme des Merisiers)

  • Yuemin Yue

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiangming Xiao

    (University of Oklahoma)

  • Wenmin Zhang

    (University of Copenhagen)

  • Kelin Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Rasmus Fensholt

    (University of Copenhagen)

Abstract

China has experienced unprecedented urbanization and associated rural depopulation during recent decades alongside a massive increase in the total population. By using satellite and demographical datasets, we here test the hypothesis that urbanization and carbon neutrality are not mutually exclusive and that sustainably managed urbanization may even be an integral part of the pathway to reduce atmospheric CO2. We show that, although urban expansion caused an initial aboveground carbon loss of −0.02 PgC during 2002–2010, urban greening compensates these original losses with an overall balance of +0.03 PgC in urban areas during 2002–2019. We further show that a maximum increase in aboveground carbon stocks was observed at intermediate distances to rural settlements (2–4 km), reflecting the decreased pressure on natural resources. Consequently, rural areas experiencing depopulation (−14 million people yr−1) coincided with an extensive aboveground carbon sink of 0.28 ± 0.05 PgC yr−1 during 2002–2019, while at the same time only a slight decline in cropland areas (4%) was observed. However, tree cover growth saturation limits the carbon removal capacity of forests and only a decrease in CO2 emissions from fossil fuel burning will make the aim of carbon neutrality achievable.

Suggested Citation

  • Xiaoxin Zhang & Martin Brandt & Xiaowei Tong & Philippe Ciais & Yuemin Yue & Xiangming Xiao & Wenmin Zhang & Kelin Wang & Rasmus Fensholt, 2022. "A large but transient carbon sink from urbanization and rural depopulation in China," Nature Sustainability, Nature, vol. 5(4), pages 321-328, April.
  • Handle: RePEc:nat:natsus:v:5:y:2022:i:4:d:10.1038_s41893-021-00843-y
    DOI: 10.1038/s41893-021-00843-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-021-00843-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-021-00843-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    2. Ogutu B. Osoro & Edward J. Oughton & Andrew R. Wilson & Akhil Rao, 2023. "Sustainability assessment of Low Earth Orbit (LEO) satellite broadband megaconstellations," Papers 2309.02338, arXiv.org, revised Mar 2024.
    3. Fang Liu & Erfu Dai & Jun Yin, 2023. "A Review of Social–Ecological System Research and Geographical Applications," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    4. Zuxuan Song & Fangmei Liu & Wenbo Lv & Jianwu Yan, 2023. "Classification of Urban Agricultural Functional Regions and Their Carbon Effects at the County Level in the Pearl River Delta, China," Agriculture, MDPI, vol. 13(9), pages 1-29, September.
    5. Feng Xu & Guangqing Chi & Huan Wang, 2024. "Scenario Analysis of Carbon Emission Changes Resulting from a Rural Residential Land Decrement Strategy: A Case Study in China," Land, MDPI, vol. 13(1), pages 1-16, January.
    6. Shengbiao Wu & Bin Chen & Chris Webster & Bing Xu & Peng Gong, 2023. "Improved human greenspace exposure equality during 21st century urbanization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shuai Zhang & Dajian Zhu & Lilian Li, 2023. "Urbanization, Human Inequality, and Material Consumption," IJERPH, MDPI, vol. 20(5), pages 1-18, March.
    8. Jianshu Li & Mo Bi & Guoen Wei, 2022. "Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships," Land, MDPI, vol. 11(11), pages 1-15, November.
    9. Congmou Zhu & Lixia Yang & Qiuyu Xu & Jinwei Fu & Yue Lin & Le Sun & Shan He & Shaofeng Yuan, 2022. "A Comparative Analysis of Farmland Occupation by Urban Sprawl and Rural Settlement Expansion in China," Land, MDPI, vol. 11(10), pages 1-16, October.
    10. Qingyang Zhang & Xinyan Cai & Xiaoliang Liu & Xiaomei Yang & Zhihua Wang, 2022. "The Influence of Urbanization to the Outer Boundary Ecological Environment Using Remote Sensing and GIS Techniques—A Case of the Greater Bay Area," Land, MDPI, vol. 11(9), pages 1-18, August.
    11. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
    12. Zuxuan Song & Ren Yang, 2022. "The Interaction and Its Evolution of the Urban Agricultural Multifunctionality and Carbon Effects in Guangzhou, China," Land, MDPI, vol. 11(9), pages 1-25, August.
    13. Haoran Su & Yaowu Wang & Zhen Zhang & Wen Dong, 2022. "Characteristics and Influencing Factors of Traditional Village Distribution in China," Land, MDPI, vol. 11(10), pages 1-26, September.
    14. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    15. Li, Shuoshuo & Liu, Yaobin & Elahi, Ehsan & Meng, Xiao & Deng, Weifeng, 2023. "A new type of urbanization policy and transition of low-carbon society: A "local- neighborhood" perspective," Land Use Policy, Elsevier, vol. 131(C).
    16. Wang, Hongzhang & Ren, Hao & Han, Kun & Li, Geng & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "Improving the net energy and energy utilization efficiency of maize production systems in the North China Plain," Energy, Elsevier, vol. 274(C).
    17. Yinan Yang & Jing Li & Li Wang & Zihao Wang & Yun Ling & Jialong Xu & Chenxin Yao & Yiyan Sun & Yuan Wang & Lixia Zhao, 2022. "The Impact of Urbanization on the Relationship between Carbon Storage Supply and Demand in Mega-Urban Agglomerations and Response Measures: A Case of Yangtze River Delta Region, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    18. Han Liu & Yu Wang & Lingling Sang & Caisheng Zhao & Tengyun Hu & Hongtao Liu & Zheng Zhang & Shuyu Wang & Shuangxi Miao & Zhengshan Ju, 2023. "Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing," Land, MDPI, vol. 12(9), pages 1-22, September.
    19. Lin Wang & Junsan Zhao & Fengxia Li & Guoping Chen, 2023. "Spatial Coupling of Carbon Sink Capacity with High-Quality Development Based on Exploitation and Protection Pattern," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    20. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:5:y:2022:i:4:d:10.1038_s41893-021-00843-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.