IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i6d10.1038_s41560-022-01038-1.html
   My bibliography  Save this article

In situ growth of graphene on both sides of a Cu–Ni alloy electrode for perovskite solar cells with improved stability

Author

Listed:
  • Xuesong Lin

    (Shanghai Jiao Tong University)

  • Hongzhen Su

    (Shanghai Jiao Tong University)

  • Sifan He

    (East China Normal University)

  • Yenan Song

    (East China Normal University)

  • Yanbo Wang

    (Shanghai Jiao Tong University)

  • Zhenzhen Qin

    (Shanghai Jiao Tong University)

  • Yongzhen Wu

    (East China University of Science and Technology)

  • Xudong Yang

    (Shanghai Jiao Tong University)

  • Qifeng Han

    (Shanghai Jiao Tong University)

  • Junfeng Fang

    (East China Normal University)

  • Yiqiang Zhang

    (Zhengzhou University)

  • Hiroshi Segawa

    (University of Tokyo)

  • Michael Grätzel

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Liyuan Han

    (Shanghai Jiao Tong University
    Zhengzhou University
    University of Tokyo)

Abstract

The instability of rear electrodes undermines the long-term operational durability of efficient perovskite solar cells. Here, a composite electrode of copper–nickel (Cu–Ni) alloy stabilized by in situ grown bifacial graphene is designed. The alloying makes the work function of Cu suitable for regular perovskite solar cells. Cu–Ni is the ideal substrate for preparing high-quality graphene via chemical vapour deposition, which simultaneously protects the device from oxygen, water and reactions between internal components. To rivet the composite electrode with the semi-device, a thermoplastic copolymer is applied as an adhesive layer through hot pressing. The resulting devices achieve power conversion efficiencies of 24.34% and 20.76% (certified 20.86%) with aperture areas of 0.09 and 1.02 cm2, respectively. The devices show improved stability: 97% of their initial efficiency is retained after 1,440 hours of a damp-heat test at 85 °C with a relative humidity of 85%; 95% of their initial efficiency is retained after 5,000 hours at maximum power point tracking under continuous 1 sun illumination.

Suggested Citation

  • Xuesong Lin & Hongzhen Su & Sifan He & Yenan Song & Yanbo Wang & Zhenzhen Qin & Yongzhen Wu & Xudong Yang & Qifeng Han & Junfeng Fang & Yiqiang Zhang & Hiroshi Segawa & Michael Grätzel & Liyuan Han, 2022. "In situ growth of graphene on both sides of a Cu–Ni alloy electrode for perovskite solar cells with improved stability," Nature Energy, Nature, vol. 7(6), pages 520-527, June.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:6:d:10.1038_s41560-022-01038-1
    DOI: 10.1038/s41560-022-01038-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-022-01038-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-022-01038-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Tian Chen & Jiangsheng Xie & Bin Wen & Qixin Yin & Ruohao Lin & Shengcai Zhu & Pingqi Gao, 2023. "Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:6:d:10.1038_s41560-022-01038-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.