IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i8d10.1038_s41560-018-0184-2.html
   My bibliography  Save this article

Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging

Author

Listed:
  • A. Singer

    (University of California-San Diego
    Cornell University)

  • M. Zhang

    (University of California-San Diego)

  • S. Hy

    (University of California-San Diego)

  • D. Cela

    (University of California-San Diego)

  • C. Fang

    (University of California-San Diego)

  • T. A. Wynn

    (University of California-San Diego)

  • B. Qiu

    (Chinese Academy of Sciences)

  • Y. Xia

    (Chinese Academy of Sciences)

  • Z. Liu

    (Chinese Academy of Sciences)

  • A. Ulvestad

    (Argonne National Laboratory)

  • N. Hua

    (University of California-San Diego)

  • J. Wingert

    (University of California-San Diego)

  • H. Liu

    (University of California-San Diego)

  • M. Sprung

    (Deutsches Elektronen-Synchrotron DESY)

  • A. V. Zozulya

    (Deutsches Elektronen-Synchrotron DESY
    European XFEL GmbH)

  • E. Maxey

    (Advanced Photon Source)

  • R. Harder

    (Advanced Photon Source)

  • Y. S. Meng

    (University of California-San Diego)

  • O. G. Shpyrko

    (University of California-San Diego)

Abstract

Lithium-rich layered oxides (LRLO) are among the leading candidates for the next-generation cathode material for energy storage, delivering 50% excess capacity over commercially used compounds. Despite excellent prospects, voltage fade has prevented effective use of the excess capacity, and a major challenge has been a lack of understanding of the mechanisms underpinning the voltage fade. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe the nucleation of a mobile dislocation network in LRLO nanoparticles. The dislocations form more readily in LRLO as compared with a classical layered oxide, suggesting a link between the defects and voltage fade. We show microscopically how the formation of partial dislocations contributes to the voltage fade. The insights allow us to design and demonstrate an effective method to recover the original high-voltage functionality. Our findings reveal that the voltage fade in LRLO is reversible and call for new paradigms for improved design of oxygen-redox active materials.

Suggested Citation

  • A. Singer & M. Zhang & S. Hy & D. Cela & C. Fang & T. A. Wynn & B. Qiu & Y. Xia & Z. Liu & A. Ulvestad & N. Hua & J. Wingert & H. Liu & M. Sprung & A. V. Zozulya & E. Maxey & R. Harder & Y. S. Meng & , 2018. "Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging," Nature Energy, Nature, vol. 3(8), pages 641-647, August.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:8:d:10.1038_s41560-018-0184-2
    DOI: 10.1038/s41560-018-0184-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0184-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0184-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shaofeng Li & Guannan Qian & Xiaomei He & Xiaojing Huang & Sang-Jun Lee & Zhisen Jiang & Yang Yang & Wei-Na Wang & Dechao Meng & Chang Yu & Jun-Sik Lee & Yong S. Chu & Zi-Feng Ma & Piero Pianetta & Ji, 2022. "Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Hailong Wang & Xin Geng & Linyu Hu & Jun Wang & Yunkai Xu & Yudong Zhu & Zhimeng Liu & Jun Lu & Yuanjing Lin & Xin He, 2024. "Efficient direct repairing of lithium- and manganese-rich cathodes by concentrated solar radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Peng Li & Nicholas W. Phillips & Steven Leake & Marc Allain & Felix Hofmann & Virginie Chamard, 2021. "Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Ashraf Abdel-Ghany & Ahmed M. Hashem & Alain Mauger & Christian M. Julien, 2020. "Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading," Energies, MDPI, vol. 13(13), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:8:d:10.1038_s41560-018-0184-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.