IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i12d10.1038_s41560-018-0276-z.html
   My bibliography  Save this article

Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects

Author

Listed:
  • Guoxing Li

    (The Pennsylvania State University)

  • Zhe Liu

    (The Pennsylvania State University)

  • Qingquan Huang

    (The Pennsylvania State University)

  • Yue Gao

    (The Pennsylvania State University)

  • Michael Regula

    (The Pennsylvania State University)

  • Daiwei Wang

    (The Pennsylvania State University)

  • Long-Qing Chen

    (The Pennsylvania State University)

  • Donghai Wang

    (The Pennsylvania State University)

Abstract

The cycle life and energy density of rechargeable metal batteries are largely limited by the dendritic growth of their metal anodes (lithium, sodium or zinc). Here we develop a three-dimensional cross-linked polyethylenimine lithium-ion-affinity sponge as the lithium metal anode host to mitigate the problem. We show that electrokinetic surface conduction and electro-osmosis within the high-zeta-potential sponge change the concentration and current density profiles, which enables dendrite-free plating/stripping of lithium with a high Coulombic efficiency at high deposition capacities and current densities, even at low temperatures. The use of a lithium-hosting sponge leads to a significantly improved cycling stability of lithium metal batteries with a limited amount of lithium (for example, the areal lithium ratio of negative to positive electrodes is 0.6) at a commercial-level areal capacity. We also observed dendrite-free morphology in sodium and zinc anodes, which indicates a broader promise of this approach.

Suggested Citation

  • Guoxing Li & Zhe Liu & Qingquan Huang & Yue Gao & Michael Regula & Daiwei Wang & Long-Qing Chen & Donghai Wang, 2018. "Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects," Nature Energy, Nature, vol. 3(12), pages 1076-1083, December.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0276-z
    DOI: 10.1038/s41560-018-0276-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0276-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0276-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0276-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.