IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i12d10.1038_s41560-017-0042-7.html
   My bibliography  Save this article

Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4

Author

Listed:
  • Arnaud J. Perez

    (Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
    Sorbonne Universités - UPMC Univ. Paris 06, 4 Place Jussieu
    Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459)

  • Quentin Jacquet

    (Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
    Sorbonne Universités - UPMC Univ. Paris 06, 4 Place Jussieu
    Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459)

  • Dmitry Batuk

    (Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
    EMAT, University of Antwerp, Groenenborgerlaan 171)

  • Antonella Iadecola

    (Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459)

  • Matthieu Saubanère

    (Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
    Institut Charles Gerhardt, CNRS UMR 5253, Université Montpellier, Place E. Bataillon)

  • Gwenaëlle Rousse

    (Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
    Sorbonne Universités - UPMC Univ. Paris 06, 4 Place Jussieu
    Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459)

  • Dominique Larcher

    (Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
    Laboratoire de Réactivité et Chimie des Solides, UMR CNRS 7314, 33 Rue Saint Leu)

  • Hervé Vezin

    (Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
    Université Lille 1, CNRS UMR 8516-LASIR)

  • Marie-Liesse Doublet

    (Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
    Institut Charles Gerhardt, CNRS UMR 5253, Université Montpellier, Place E. Bataillon)

  • Jean-Marie Tarascon

    (Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
    Sorbonne Universités - UPMC Univ. Paris 06, 4 Place Jussieu
    Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459)

Abstract

The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g–1 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material’s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material’s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.

Suggested Citation

  • Arnaud J. Perez & Quentin Jacquet & Dmitry Batuk & Antonella Iadecola & Matthieu Saubanère & Gwenaëlle Rousse & Dominique Larcher & Hervé Vezin & Marie-Liesse Doublet & Jean-Marie Tarascon, 2017. "Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4," Nature Energy, Nature, vol. 2(12), pages 954-962, December.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:12:d:10.1038_s41560-017-0042-7
    DOI: 10.1038/s41560-017-0042-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0042-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0042-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:12:d:10.1038_s41560-017-0042-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.