Author
Listed:
- Yongwoo Shin
(Lawrence Berkeley National Laboratory
Samsung Research America)
- Wang Hay Kan
(Lawrence Berkeley National Laboratory
Chinese Academy of Sciences)
- Muratahan Aykol
(Lawrence Berkeley National Laboratory
Toyota Research Institute)
- Joseph K. Papp
(University of California)
- Bryan D. McCloskey
(Lawrence Berkeley National Laboratory
University of California)
- Guoying Chen
(Lawrence Berkeley National Laboratory)
- Kristin A. Persson
(Lawrence Berkeley National Laboratory
University of California, Berkeley)
Abstract
Li-excess cathodes comprise one of the most promising avenues for increasing the energy density of current Li-ion technology. However, the first-cycle surface oxygen release in these materials causes cation densification and structural reconstruction of the surface region, leading to encumbered ionic transport and increased impedance. In this work, we use the first principles Density Functional Theory to systematically screen for optimal cation dopants to improve oxygen-retention at the surface. The initial dopant set includes all transition metal, post-transition metal, and metalloid elements. Our screening identifies Os, Sb, Ru, Ir, or Ta as high-ranking dopants considering the combined criteria, and rationalization based on the electronic structure of the top candidates are presented. To validate the theoretical screening, a Ta-doped Li1.3Nb0.3Mn0.4O2 cathode was synthesized and shown to present initial improved electrochemical performance as well as significantly reduced oxygen evolution, as compared with the pristine, un-doped, system.
Suggested Citation
Yongwoo Shin & Wang Hay Kan & Muratahan Aykol & Joseph K. Papp & Bryan D. McCloskey & Guoying Chen & Kristin A. Persson, 2018.
"Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection,"
Nature Communications, Nature, vol. 9(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07080-6
DOI: 10.1038/s41467-018-07080-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07080-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.