IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06553-y.html
   My bibliography  Save this article

Electrophysiological mechanisms of human memory consolidation

Author

Listed:
  • Hui Zhang

    (Ruhr University Bochum)

  • Juergen Fell

    (University of Bonn)

  • Nikolai Axmacher

    (Ruhr University Bochum)

Abstract

Consolidation stabilizes memory traces after initial encoding. Rodent studies suggest that memory consolidation depends on replay of stimulus-specific activity patterns during fast hippocampal “ripple” oscillations. Here, we measured replay in intracranial electroencephalography recordings in human epilepsy patients, and related replay to ripples. Stimulus-specific activity was identified using representational similarity analysis and then tracked during waking rest and sleep after encoding. Stimulus-specific gamma (30–90 Hz) activity during early (100–500 ms) and late (500–1200 ms) encoding is spontaneously reactivated during waking state and sleep, independent of later memory. Ripples during nREM sleep, but not during waking state, trigger replay of activity from the late time window specifically for remembered items. Ripple-triggered replay of activity from the early time window during nREM sleep is enhanced for forgotten items. These results provide the first electrophysiological evidence for replay related to memory consolidation in humans, and point to a prominent role of nREM ripple-triggered replay in consolidation processes.

Suggested Citation

  • Hui Zhang & Juergen Fell & Nikolai Axmacher, 2018. "Electrophysiological mechanisms of human memory consolidation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06553-y
    DOI: 10.1038/s41467-018-06553-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06553-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06553-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Haoxin Zhang & Ivan Skelin & Shiting Ma & Michelle Paff & Lilit Mnatsakanyan & Michael A. Yassa & Robert T. Knight & Jack J. Lin, 2024. "Awake ripples enhance emotional memory encoding in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ralf C. Buckley, 2022. "Sensory and Emotional Components in Tourist Memories of Wildlife Encounters: Intense, Detailed, and Long-Lasting Recollections of Individual Incidents," Sustainability, MDPI, vol. 14(8), pages 1-12, April.
    4. Kazuki Sakakura & Naoto Kuroda & Masaki Sonoda & Takumi Mitsuhashi & Ethan Firestone & Aimee F. Luat & Neena I. Marupudi & Sandeep Sood & Eishi Asano, 2023. "Developmental atlas of phase-amplitude coupling between physiologic high-frequency oscillations and slow waves," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06553-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.