IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06501-w.html
   My bibliography  Save this article

A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics

Author

Listed:
  • Torcato Meira

    (Columbia University
    Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho
    ICVS/3B’s - PT Government Associate Laboratory)

  • Felix Leroy

    (Columbia University)

  • Eric W. Buss

    (Columbia University)

  • Azahara Oliva

    (Columbia University)

  • Jung Park

    (Columbia University)

  • Steven A. Siegelbaum

    (Columbia University)

Abstract

Recent results suggest that social memory requires the dorsal hippocampal CA2 region as well as a subset of ventral CA1 neurons. However, it is unclear whether dorsal CA2 and ventral CA1 represent parallel or sequential circuits. Moreover, because evidence implicating CA2 in social memory comes largely from long-term inactivation experiments, the dynamic role of CA2 in social memory remains unclear. Here, we use pharmacogenetics and optogenetics in mice to acutely and reversibly silence dorsal CA2 and its projections to ventral hippocampus. We show that dorsal CA2 activity is critical for encoding, consolidation, and recall phases of social memory. Moreover, dorsal CA2 contributes to social memory by providing strong excitatory input to the same subregion of ventral CA1 that contains the subset of neurons implicated in social memory. Thus, our studies provide new insights into a dorsal CA2 to ventral CA1 circuit whose dynamic activity is necessary for social memory.

Suggested Citation

  • Torcato Meira & Felix Leroy & Eric W. Buss & Azahara Oliva & Jung Park & Steven A. Siegelbaum, 2018. "A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06501-w
    DOI: 10.1038/s41467-018-06501-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06501-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06501-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elise C. Cope & Samantha H. Wang & Renée C. Waters & Isha R. Gore & Betsy Vasquez & Blake J. Laham & Elizabeth Gould, 2023. "Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Eunji Kong & Kyu-Hee Lee & Jongrok Do & Pilhan Kim & Doyun Lee, 2023. "Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Nahoko Kuga & Ryota Nakayama & Shota Morikawa & Haruya Yagishita & Daichi Konno & Hiromi Shiozaki & Natsumi Honjoya & Yuji Ikegaya & Takuya Sasaki, 2023. "Hippocampal sharp wave ripples underlie stress susceptibility in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06501-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.