IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05997-6.html
   My bibliography  Save this article

SMRT-Cappable-seq reveals complex operon variants in bacteria

Author

Listed:
  • Bo Yan

    (New England Biolabs Inc.)

  • Matthew Boitano

    (PacBio)

  • Tyson A. Clark

    (PacBio)

  • Laurence Ettwiller

    (New England Biolabs Inc.)

Abstract

Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5′ and 3′ ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.

Suggested Citation

  • Bo Yan & Matthew Boitano & Tyson A. Clark & Laurence Ettwiller, 2018. "SMRT-Cappable-seq reveals complex operon variants in bacteria," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05997-6
    DOI: 10.1038/s41467-018-05997-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05997-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05997-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Metelev & Erik Lundin & Ivan L. Volkov & Arvid H. Gynnå & Johan Elf & Magnus Johansson, 2022. "Direct measurements of mRNA translation kinetics in living cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Amir Bar & Liron Argaman & Michal Eldar & Hanah Margalit, 2023. "TRS: a method for determining transcript termini from RNAtag-seq sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Mark R. Davies & Nadia Keller & Stephan Brouwer & Magnus G. Jespersen & Amanda J. Cork & Andrew J. Hayes & Miranda E. Pitt & David M. P. Oliveira & Nichaela Harbison-Price & Olivia M. Bertolla & Danie, 2023. "Detection of Streptococcus pyogenes M1UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05997-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.